MPI-AMRVAC 3.1
The MPI - Adaptive Mesh Refinement - Versatile Advection Code (development version)
|
Module with geometry-related routines (e.g., divergence, curl) More...
Functions/Subroutines | |
subroutine | set_coordinate_system (geom) |
Set the coordinate system to be used. | |
subroutine | set_pole |
subroutine | putgridgeo (igrid) |
Deallocate geometry-related variables. | |
subroutine | get_surface_area (s, ixgl) |
calculate area of surfaces of cells | |
subroutine | gradient (q, ixil, ixol, idir, gradq, nth_in) |
subroutine | gradientl (q, ixil, ixol, idir, gradq) |
subroutine | gradientf (q, x, ixil, ixol, idir, gradq, nth_in, pm_in) |
subroutine | divvector (qvec, ixil, ixol, divq, nth_in) |
subroutine | divvectors (qvec, ixil, ixol, divq) |
Calculate divergence of a vector qvec within ixL using limited extrapolation to cell edges. | |
subroutine | curlvector (qvec, ixil, ixol, curlvec, idirmin, idirmin0, ndir0, fourthorder) |
Calculate curl of a vector qvec within ixL Options to employ standard second order CD evaluations use Gauss theorem for non-Cartesian grids use Stokes theorem for non-Cartesian grids. | |
subroutine | curlvector_trans (qvec, qvecc, ixil, ixol, curlvec, idim, idirmin, idirmin0, ndir0) |
Calculate idim transverse components of curl of a vector qvec within ixL Options to employ standard second order CD evaluations use Gauss theorem for non-Cartesian grids use Stokes theorem for non-Cartesian grids. | |
Variables | |
integer | coordinate =-1 |
integer, parameter | cartesian = 0 |
integer, parameter | cartesian_stretched = 1 |
integer, parameter | cylindrical = 2 |
integer, parameter | spherical = 3 |
integer, parameter | cartesian_expansion = 4 |
integer | type_curl =0 |
integer, parameter | central =1 |
integer, parameter | gaussbased =2 |
integer, parameter | stokesbased =3 |
Module with geometry-related routines (e.g., divergence, curl)
subroutine mod_geometry::curlvector | ( | double precision, dimension(ixi^s,1:ndir0), intent(in) | qvec, |
integer, intent(in) | ixi, | ||
integer, intent(in) | l, | ||
integer, intent(in) | ixo, | ||
l, | |||
double precision, dimension(ixi^s,idirmin0:3), intent(inout) | curlvec, | ||
integer, intent(inout) | idirmin, | ||
integer, intent(in) | idirmin0, | ||
integer, intent(in) | ndir0, | ||
logical, intent(in), optional | fourthorder | ||
) |
Calculate curl of a vector qvec within ixL Options to employ standard second order CD evaluations use Gauss theorem for non-Cartesian grids use Stokes theorem for non-Cartesian grids.
[in] | fourthorder | Default: false |
Definition at line 708 of file mod_geometry.t.
subroutine mod_geometry::curlvector_trans | ( | double precision, dimension(ixi^s,1:ndir0), intent(in) | qvec, |
double precision, dimension(ixi^s,1:ndir0), intent(in) | qvecc, | ||
integer, intent(in) | ixi, | ||
integer, intent(in) | l, | ||
integer, intent(in) | ixo, | ||
l, | |||
double precision, dimension(ixi^s,idirmin0:3), intent(inout) | curlvec, | ||
integer, intent(in) | idim, | ||
integer, intent(inout) | idirmin, | ||
integer, intent(in) | idirmin0, | ||
integer, intent(in) | ndir0 | ||
) |
Calculate idim transverse components of curl of a vector qvec within ixL Options to employ standard second order CD evaluations use Gauss theorem for non-Cartesian grids use Stokes theorem for non-Cartesian grids.
Definition at line 1177 of file mod_geometry.t.
subroutine mod_geometry::divvector | ( | double precision, dimension(ixi^s,1:ndir), intent(in) | qvec, |
integer, intent(in) | ixi, | ||
integer, intent(in) | l, | ||
integer, intent(in) | ixo, | ||
l, | |||
double precision, dimension(ixi^s), intent(inout) | divq, | ||
integer, intent(in), optional | nth_in | ||
) |
Definition at line 582 of file mod_geometry.t.
subroutine mod_geometry::divvectors | ( | double precision, dimension(ixi^s,1:ndir), intent(in) | qvec, |
integer, intent(in) | ixi, | ||
integer, intent(in) | l, | ||
integer, intent(in) | ixo, | ||
l, | |||
double precision, dimension(ixi^s), intent(inout) | divq | ||
) |
Calculate divergence of a vector qvec within ixL using limited extrapolation to cell edges.
Definition at line 655 of file mod_geometry.t.
subroutine mod_geometry::get_surface_area | ( | type(state) | s, |
integer, intent(in) | ixg, | ||
integer, intent(in) | l | ||
) |
calculate area of surfaces of cells
Definition at line 158 of file mod_geometry.t.
subroutine mod_geometry::gradient | ( | double precision, dimension(ixi^s), intent(in) | q, |
integer, intent(in) | ixi, | ||
integer, intent(in) | l, | ||
integer, intent(in) | ixo, | ||
l, | |||
integer, intent(in) | idir, | ||
double precision, dimension(ixi^s), intent(inout) | gradq, | ||
integer, intent(in), optional | nth_in | ||
) |
Definition at line 329 of file mod_geometry.t.
subroutine mod_geometry::gradientf | ( | double precision, dimension(ixi^s), intent(in) | q, |
double precision, dimension(ixi^s,1:ndim), intent(in) | x, | ||
integer, intent(in) | ixi, | ||
integer, intent(in) | l, | ||
integer, intent(in) | ixo, | ||
l, | |||
integer, intent(in) | idir, | ||
double precision, dimension(ixi^s), intent(inout) | gradq, | ||
integer, intent(in), optional | nth_in, | ||
logical, intent(in), optional | pm_in | ||
) |
Definition at line 476 of file mod_geometry.t.
subroutine mod_geometry::gradientl | ( | double precision, dimension(ixi^s), intent(in) | q, |
integer, intent(in) | ixi, | ||
integer, intent(in) | l, | ||
integer, intent(in) | ixo, | ||
l, | |||
integer, intent(in) | idir, | ||
double precision, dimension(ixi^s), intent(inout) | gradq | ||
) |
subroutine mod_geometry::putgridgeo | ( | integer, intent(in) | igrid | ) |
Deallocate geometry-related variables.
Definition at line 148 of file mod_geometry.t.
subroutine mod_geometry::set_coordinate_system | ( | character(len=*), intent(in) | geom | ) |
Set the coordinate system to be used.
[in] | geom | Name of the coordinate system |
Definition at line 22 of file mod_geometry.t.
subroutine mod_geometry::set_pole |
integer, parameter mod_geometry::cartesian = 0 |
Definition at line 8 of file mod_geometry.t.
integer, parameter mod_geometry::cartesian_expansion = 4 |
Definition at line 12 of file mod_geometry.t.
integer, parameter mod_geometry::cartesian_stretched = 1 |
Definition at line 9 of file mod_geometry.t.
integer, parameter mod_geometry::central =1 |
Definition at line 15 of file mod_geometry.t.
integer mod_geometry::coordinate =-1 |
Definition at line 7 of file mod_geometry.t.
integer, parameter mod_geometry::cylindrical = 2 |
Definition at line 10 of file mod_geometry.t.
integer, parameter mod_geometry::gaussbased =2 |
Definition at line 16 of file mod_geometry.t.
integer, parameter mod_geometry::spherical = 3 |
Definition at line 11 of file mod_geometry.t.
integer, parameter mod_geometry::stokesbased =3 |
Definition at line 17 of file mod_geometry.t.
integer mod_geometry::type_curl =0 |
Definition at line 14 of file mod_geometry.t.