MPI-AMRVAC  3.1
The MPI - Adaptive Mesh Refinement - Versatile Advection Code (development version)
mod_mhd_roe.t
Go to the documentation of this file.
1 !> Subroutines for Roe-type Riemann solver for MHD
2 module mod_mhd_roe
3  use mod_mhd_phys
4  use mod_functions_bfield, only: mag
6 
7  implicit none
8  private
9 
10  integer, parameter :: fastRW_ = 3,fastlw_=4,slowrw_=5,slowlw_=6 ! Characteristic
11  integer, parameter :: entroW_ = 8,diverw_=7,alfvrw_=1,alfvlw_=2 ! waves
12 
13  public :: mhd_roe_init
14 
15 contains
16 
17  subroutine mhd_roe_init()
18  use mod_global_parameters, only: entropycoef, nw
19  integer :: il
20 
24 
25  nworkroe=15
26  allocate(entropycoef(nw))
27 
28  do il = 1, nw
29  select case(il)
30  case(fastrw_,fastlw_,slowrw_,slowlw_)
31  entropycoef(il) = 0.2d0
32  case(alfvrw_,alfvlw_)
33  entropycoef(il) = 0.4d0
34  case default
35  entropycoef(il) = -1.0d0
36  end select
37  end do
38 
39  end subroutine mhd_roe_init
40 
41  ! Eight-wave MHD Riemann solver. See Powell, Notes on the eigensystem, Gombosi
42  ! Calculate the wroe average of primitive variables in wL and wR, assignment:
43  ! rho -> sqrho, m -> v, e -> p, B_idim -> B_idim, B_idir -> beta_idir
44  ! Calculate also alpha_f,alpha_s,c_f,c_s,csound2,dp,rhodv
45  !
46  ! wL,wR,wroe are all interface centered quantities
47  subroutine mhd_average(wL,wR,x,ix^L,idim,wroe,workroe)
49 
50  integer, intent(in) :: ix^L, idim
51  double precision, intent(in) :: wL(ixG^T, nw), wR(ixG^T, nw)
52  double precision, intent(inout) :: wroe(ixG^T, nw)
53  double precision, intent(inout) :: workroe(ixG^T, nworkroe)
54  double precision, intent(in) :: x(ixG^T, 1:^ND)
55 
56  call average2(wl,wr,x,ix^l,idim,wroe,workroe(ixg^t,1),workroe(ixg^t,2), &
57  workroe(ixg^t,3),workroe(ixg^t,4),workroe(ixg^t,5),workroe(ixg^t,6), &
58  workroe(ixg^t,7),workroe(ixg^t,8))
59 
60  end subroutine mhd_average
61 
62  ! Eight-wave MHD Riemann solver. See Powell, Notes on the eigensystem, Gombosi
63  ! Calculate the wroe average of primitive variables in wL and wR, assignment:
64  ! rho -> sqrho, m -> v, e -> p, B_idim -> B_idim, B_idir -> beta_idir
65  ! Calculate also alpha_f,alpha_s,c_f,c_s,csound2,dp,rhodv
66  !
67  ! wL,wR,wroe are all interface centered quantities
68  subroutine average2(wL,wR,x,ix^L,idim,wroe,cfast,cslow,afast,aslow,csound2,dp, &
69  rhodv,tmp)
71 
72  integer :: ix^L,idim,idir,jdir,iw
73  double precision, dimension(ixG^T,nw) :: wL,wR,wroe
74  double precision, intent(in) :: x(ixG^T,1:ndim)
75  double precision, dimension(ixG^T) :: cfast,cslow,afast,aslow,csound2,dp, &
76  rhodv,tmp
77 
78  if (ndir==1) call mpistop("MHD with d=11 is the same as HD")
79 
80  !Averaging primitive variables
81  wroe(ix^s,rho_)=half*(wl(ix^s,rho_)+wr(ix^s,rho_))
82  do idir=1,ndir
83  wroe(ix^s,mom(idir))=half*(wl(ix^s,mom(idir))/wl(ix^s,rho_)+wr(ix^s,mom(idir))/wr(ix^s,rho_))
84  wroe(ix^s,mag(idir))=half*(wl(ix^s,mag(idir))+wr(ix^s,mag(idir)))
85  end do
86  ! Use afast and aslow for pressures pL and pR
87  call mhd_get_pthermal(wl,x,ixg^ll,ix^l,afast)
88  call mhd_get_pthermal(wr,x,ixg^ll,ix^l,aslow)
89 
90  if(mhd_energy) then
91  wroe(ix^s,e_)=half*(afast(ix^s)+aslow(ix^s))
92  ! dp=pR-pL
93  dp(ix^s)=aslow(ix^s)-afast(ix^s)
94  else
95  dp(ix^s)=aslow(ix^s)-afast(ix^s)
96  end if
97 
98  !CONSERVATIVE rho*dv_idim=dm_idim-v_idim*drho
99  rhodv(ix^s)=wr(ix^s,mom(idim))-wl(ix^s,mom(idim))-&
100  wroe(ix^s,mom(idim))*(wr(ix^s,rho_)-wl(ix^s,rho_))
101 
102  !Calculate csound2,cfast,cslow,alphafast and alphaslow
103 
104  ! get csound**2
105  if(mhd_energy) then
106  csound2(ix^s)=mhd_gamma*wroe(ix^s,p_)/wroe(ix^s,rho_)
107  else
108  csound2(ix^s)=mhd_gamma*mhd_adiab*wroe(ix^s,rho_)**(mhd_gamma-one)
109  end if
110 
111  ! aa=B**2/rho+a**2
112  cfast(ix^s)=sum(wroe(ix^s,mag(:))**2,dim=ndim+1)/wroe(ix^s,rho_)+csound2(ix^s)
113 
114  ! cs**2=0.5*(aa+dsqrt(aa**2-4*a**2*(b_i**2/rho)))
115  cslow(ix^s)=half*(cfast(ix^s)-dsqrt(cfast(ix^s)**2-&
116  4d0*csound2(ix^s)*wroe(ix^s,mag(idim))**2/wroe(ix^s,rho_)))
117 
118  ! cf**2=aa-cs**2
119  cfast(ix^s)=cfast(ix^s)-cslow(ix^s)
120 
121  ! alpha_f**2=(a**2-cs**2)/(cf**2-cs**2)
122  afast(ix^s)=(csound2(ix^s)-cslow(ix^s))/(cfast(ix^s)-cslow(ix^s))
123  afast(ix^s)=min(one,max(afast(ix^s),zero))
124 
125  ! alpha_s=dsqrt(1-alpha_f**2)
126  aslow(ix^s)=dsqrt(one-afast(ix^s))
127 
128  ! alpha_f=dsqrt(alpha_f**2)
129  afast(ix^s)=dsqrt(afast(ix^s))
130 
131  ! cf=dsqrt(cf**2)
132  cfast(ix^s)=dsqrt(cfast(ix^s))
133 
134  ! cs=dsqrt(cs**2)
135  cslow(ix^s)=dsqrt(cslow(ix^s))
136 
137  !Replace the primitive variables with more useful quantities:
138  ! rho -> dsqrt(rho)
139  wroe(ix^s,rho_)=dsqrt(wroe(ix^s,rho_))
140 
141  ! Avoid sgn(b_idim)==0
142  where(dabs(wroe(ix^s,mag(idim)))<smalldouble)&
143  wroe(ix^s,mag(idim))=smalldouble
144  ! B_idir,jdir -> beta_idir,jdir
145  idir=idim+1-ndir*(idim/ndir)
146  if(ndir==2)then
147  where(wroe(ix^s,mag(idir))>=zero)
148  wroe(ix^s,mag(idir))=one
149  elsewhere
150  wroe(ix^s,mag(idir))=-one
151  end where
152  else
153  !beta_j=B_j/dsqrt(B_i**2+B_j**2); beta_i=B_i/dsqrt(B_i**2+B_j**2)
154  jdir=idir+1-ndir*(idir/ndir)
155  tmp(ix^s)=dsqrt(wroe(ix^s,mag(idir))**2+wroe(ix^s,mag(jdir))**2)
156  where(tmp(ix^s)>smalldouble)
157  wroe(ix^s,mag(idir))=wroe(ix^s,mag(idir))/tmp(ix^s)
158  wroe(ix^s,mag(jdir))=wroe(ix^s,mag(jdir))/tmp(ix^s)
159  elsewhere
160  wroe(ix^s,mag(idir))=dsqrt(half)
161  wroe(ix^s,mag(jdir))=dsqrt(half)
162  end where
163  endif
164 
165  end subroutine average2
166 
167  ! Calculate the il-th characteristic speed and the jump in the il-th
168  ! characteristic variable in the idim direction within ixL.
169  ! The eigenvalues and the l=r**(-1) matrix is calculated from wroe.
170  ! jump(il)=Sum_il l(il,iw)*(wR(iw)-wL(iw)), where w are the conservative
171  ! variables. However part of the summation is done in advance and saved into
172  ! bdv,bdb,dp and dv variables. "smalla" contains a lower limit for "a" to be
173  ! used in the entropy fix.
174  !
175  ! All the variables are centered on the cell interface, thus the
176  ! "*C" notation is omitted for sake of brevity.
177  subroutine mhd_get_eigenjump(wL,wR,wroe,x,ix^L,il,idim,smalla,a,jump,workroe)
179 
180  integer, intent(in) :: ix^L,il,idim
181  double precision, dimension(ixG^T,nw) :: wL,wR,wroe
182  double precision, intent(in) :: x(ixG^T,1:ndim)
183  double precision, dimension(ixG^T) :: smalla,a,jump
184  double precision, dimension(ixG^T,nworkroe) :: workroe
185 
186  call geteigenjump2(wl,wr,wroe,x,ix^l,il,idim,smalla,a,jump, &
187  workroe(ixg^t,1),workroe(ixg^t,2), &
188  workroe(ixg^t,3),workroe(ixg^t,4),workroe(ixg^t,5),workroe(ixg^t,6), &
189  workroe(ixg^t,7),workroe(ixg^t,8),workroe(ixg^t,9),workroe(ixg^t,10), &
190  workroe(ixg^t,11),workroe(ixg^t,12),workroe(ixg^t,13))
191 
192  end subroutine mhd_get_eigenjump
193 
194  ! Calculate the il-th characteristic speed and the jump in the il-th
195  ! characteristic variable in the idim direction within ixL.
196  ! The eigenvalues and the l=r**(-1) matrix is calculated from wroe.
197  ! jump(il)=Sum_il l(il,iw)*(wR(iw)-wL(iw)), where w are the conservative
198  ! variables. However part of the summation is done in advance and saved into
199  ! bdv,bdb,dp and dv variables. "smalla" contains a lower limit for "a" to be
200  ! used in the entropy fix.
201  !
202  ! All the variables are centered on the cell interface, thus the
203  ! "*C" notation is omitted for sake of brevity.
204  subroutine geteigenjump2(wL,wR,wroe,x,ix^L,il,idim,smalla,a,jump, &
205  cfast,cslow,afast,aslow,csound2,dp,rhodv,bdv,bdb,cs2L,cs2R,cs2ca2L,cs2ca2R)
207  use mod_tvd
208 
209  integer :: ix^L,il,idim,idir,jdir
210  double precision, dimension(ixG^T,nw) :: wL,wR,wroe
211  double precision, intent(in) :: x(ixG^T,1:ndim)
212  double precision, dimension(ixG^T) :: smalla,a,jump
213  double precision, dimension(ixG^T) :: cfast,cslow,afast,aslow,csound2,dp,rhodv
214  double precision, dimension(ixG^T) :: bdv,bdb
215  double precision, dimension(ixG^T) :: aL,aR,cs2L,cs2R,cs2ca2L,cs2ca2R
216 
217  idir=idim+1-ndir*(idim/ndir)
218  jdir=idir+1-ndir*(idir/ndir)
219 
220  if(il==fastrw_)then
221  !Fast and slow waves use bdv=sqrho**2*sign(bx)*(betay*dvy+betaz*dvz)
222  ! bdb=sqrho*a* (betay*dBy+betaz*dBz)
223  bdv(ix^s)=wroe(ix^s,mag(idir))* &
224  (wr(ix^s,mom(idir))/wr(ix^s,rho_)-wl(ix^s,mom(idir))/wl(ix^s,rho_))
225  if(ndir==3)bdv(ix^s)=bdv(ix^s)+wroe(ix^s,mag(jdir))* &
226  (wr(ix^s,mom(jdir))/wr(ix^s,rho_)-wl(ix^s,mom(jdir))/wl(ix^s,rho_))
227  bdv(ix^s)=bdv(ix^s)*sign(wroe(ix^s,rho_)**2,wroe(ix^s,mag(idim)))
228 
229  bdb(ix^s)=wroe(ix^s,mag(idir))*(wr(ix^s,mag(idir))-wl(ix^s,mag(idir)))
230  if(ndir==3)bdb(ix^s)=bdb(ix^s)+&
231  wroe(ix^s,mag(jdir))*(wr(ix^s,mag(jdir))-wl(ix^s,mag(jdir)))
232  bdb(ix^s)=bdb(ix^s)*dsqrt(csound2(ix^s))*wroe(ix^s,rho_)
233  endif
234 
235  if(il==alfvrw_)then
236  !Alfven waves use bdv=0.5*sqrho**2* (betaz*dvy-betay*dvz)
237  ! bdb=0.5*sqrho*sign(bx)*(betaz*dBy-betay*dBz)
238  bdv(ix^s)=wroe(ix^s,mag(jdir))* &
239  (wr(ix^s,mom(idir))/wr(ix^s,rho_)-wl(ix^s,mom(idir))/wl(ix^s,rho_)) &
240  -wroe(ix^s,mag(idir))* &
241  (wr(ix^s,mom(jdir))/wr(ix^s,rho_)-wl(ix^s,mom(jdir))/wl(ix^s,rho_))
242  bdb(ix^s)=wroe(ix^s,mag(jdir))*(wr(ix^s,mag(idir))-wl(ix^s,mag(idir))) &
243  -wroe(ix^s,mag(idir))*(wr(ix^s,mag(jdir))-wl(ix^s,mag(jdir)))
244  bdv(ix^s)=bdv(ix^s)*half*wroe(ix^s,rho_)**2
245  bdb(ix^s)=bdb(ix^s)*half*sign(wroe(ix^s,rho_),wroe(ix^s,mag(idim)))
246  endif
247 
248  select case(il)
249  case(fastrw_)
250  a(ix^s)=wroe(ix^s,mom(idim))+cfast(ix^s)
251  jump(ix^s)=half/csound2(ix^s)*(&
252  afast(ix^s)*(+cfast(ix^s)*rhodv(ix^s)+dp(ix^s))&
253  +aslow(ix^s)*(-cslow(ix^s)*bdv(ix^s)+bdb(ix^s)))
254  case(fastlw_)
255  a(ix^s)=wroe(ix^s,mom(idim))-cfast(ix^s)
256  jump(ix^s)=half/csound2(ix^s)*(&
257  afast(ix^s)*(-cfast(ix^s)*rhodv(ix^s)+dp(ix^s))&
258  +aslow(ix^s)*(+cslow(ix^s)*bdv(ix^s)+bdb(ix^s)))
259  case(slowrw_)
260  a(ix^s)=wroe(ix^s,mom(idim))+cslow(ix^s)
261  jump(ix^s)=half/csound2(ix^s)*(&
262  aslow(ix^s)*(+cslow(ix^s)*rhodv(ix^s)+dp(ix^s))&
263  +afast(ix^s)*(+cfast(ix^s)*bdv(ix^s)-bdb(ix^s)))
264  case(slowlw_)
265  a(ix^s)=wroe(ix^s,mom(idim))-cslow(ix^s)
266  jump(ix^s)=half/csound2(ix^s)*(&
267  aslow(ix^s)*(-cslow(ix^s)*rhodv(ix^s)+dp(ix^s))&
268  +afast(ix^s)*(-cfast(ix^s)*bdv(ix^s)-bdb(ix^s)))
269  case(entrow_)
270  a(ix^s)=wroe(ix^s,mom(idim))
271  jump(ix^s)=wr(ix^s,rho_)-wl(ix^s,rho_)-dp(ix^s)/csound2(ix^s)
272  case(diverw_)
273  if(divbwave)then
274  a(ix^s)=wroe(ix^s,mom(idim))
275  jump(ix^s)=wr(ix^s,mag(idim))-wl(ix^s,mag(idim))
276  else
277  a(ix^s)=zero
278  jump(ix^s)=zero
279  endif
280  case(alfvrw_)
281  a(ix^s)=wroe(ix^s,mom(idim))+dabs(wroe(ix^s,mag(idim)))/wroe(ix^s,rho_)
282  jump(ix^s)=+bdv(ix^s)-bdb(ix^s)
283  case(alfvlw_)
284  a(ix^s)=wroe(ix^s,mom(idim))-dabs(wroe(ix^s,mag(idim)))/wroe(ix^s,rho_)
285  jump(ix^s)=-bdv(ix^s)-bdb(ix^s)
286  end select
287 
288  ! Calculate "smalla" or modify "a" based on the "typeentropy" switch
289 
290  select case(typeentropy(il))
291  case('yee')
292  ! Based on Yee JCP 68,151 eq 3.23
293  smalla(ix^s)=entropycoef(il)
294  case('harten','powell', 'ratio')
295  ! Based on Harten & Hyman JCP 50, 235 and Zeeuw & Powell JCP 104,56
296  ! Initialize left and right eigenvalues by velocities
297  al(ix^s)= wl(ix^s,mom(idim))/wl(ix^s,rho_)
298  ar(ix^s)= wr(ix^s,mom(idim))/wr(ix^s,rho_)
299  ! Calculate the final "aL" and "aR"
300  select case(il)
301  case(fastrw_)
302  ! These quantities will be used for all the fast and slow waves
303  ! Calculate soundspeed**2 and cs**2+ca**2.
304  call mhd_get_pthermal(wl,x,ixg^ll,ix^l,cs2l)
305  cs2l(ix^s)=mhd_gamma*cs2l(ix^s)/wl(ix^s,rho_)
306  call mhd_get_pthermal(wr,x,ixg^ll,ix^l,cs2r)
307  cs2r(ix^s)=mhd_gamma*cs2r(ix^s)/wl(ix^s,rho_)
308  cs2ca2l(ix^s)=cs2l(ix^s)+sum(wl(ix^s,mag(:))**2,dim=ndim+1)/wl(ix^s,rho_)
309  cs2ca2r(ix^s)=cs2r(ix^s)+sum(wr(ix^s,mag(:))**2,dim=ndim+1)/wr(ix^s,rho_)
310  ! Save the discriminants into cs2L and cs2R
311  cs2l(ix^s)=&
312  dsqrt(cs2ca2l(ix^s)**2-4d0*cs2l(ix^s)*wl(ix^s,mag(idim))**2/wl(ix^s,rho_))
313  cs2r(ix^s)=&
314  dsqrt(cs2ca2r(ix^s)**2-4d0*cs2r(ix^s)*wr(ix^s,mag(idim))**2/wr(ix^s,rho_))
315 
316  ! The left and right eigenvalues for the fast wave going to right
317  al(ix^s)=al(ix^s) + dsqrt(half*(cs2ca2l(ix^s) + cs2l(ix^s)))
318  ar(ix^s)=ar(ix^s) + dsqrt(half*(cs2ca2r(ix^s) + cs2r(ix^s)))
319  case(fastlw_)
320  al(ix^s)=al(ix^s) - dsqrt(half*(cs2ca2l(ix^s) + cs2l(ix^s)))
321  ar(ix^s)=ar(ix^s) - dsqrt(half*(cs2ca2r(ix^s) + cs2r(ix^s)))
322  case(slowrw_)
323  al(ix^s)=al(ix^s) + dsqrt(half*(cs2ca2l(ix^s) - cs2l(ix^s)))
324  ar(ix^s)=ar(ix^s) + dsqrt(half*(cs2ca2r(ix^s) - cs2r(ix^s)))
325  case(slowlw_)
326  al(ix^s)=al(ix^s) - dsqrt(half*(cs2ca2l(ix^s) - cs2l(ix^s)))
327  ar(ix^s)=ar(ix^s) - dsqrt(half*(cs2ca2r(ix^s) - cs2r(ix^s)))
328  case(entrow_,diverw_)
329  ! These propagate by the velocity
330  case(alfvrw_)
331  ! Store the Alfven speeds into cs2ca2L and cs2ca2R
332  cs2ca2l(ix^s)=dabs(wl(ix^s,mag(idim)))/dsqrt(wl(ix^s,rho_))
333  cs2ca2r(ix^s)=dabs(wr(ix^s,mag(idim)))/dsqrt(wr(ix^s,rho_))
334 
335  al(ix^s)=al(ix^s) + cs2ca2l(ix^s)
336  ar(ix^s)=ar(ix^s) + cs2ca2r(ix^s)
337  case(alfvlw_)
338  al(ix^s)=al(ix^s) - cs2ca2l(ix^s)
339  ar(ix^s)=ar(ix^s) - cs2ca2r(ix^s)
340  end select
341  end select
342 
343  call entropyfix(ix^l,il,al,ar,a,smalla)
344 
345  end subroutine geteigenjump2
346 
347  ! Multiply q by R(il,iw), where R is the right eigenvalue matrix at wroe
348  subroutine mhd_rtimes(q,w,ix^L,iw,il,idim,rq,workroe)
350 
351  integer, intent(in) :: ix^L, iw, il, idim
352  double precision, intent(in) :: w(ixG^T, nw), q(ixG^T)
353  double precision, intent(inout) :: rq(ixG^T)
354  double precision, intent(inout) :: workroe(ixG^T, nworkroe)
355 
356  call rtimes2(q,w,ix^l,iw,il,idim,rq,&
357  workroe(ixg^t,1),workroe(ixg^t,2), &
358  workroe(ixg^t,3),workroe(ixg^t,4),workroe(ixg^t,5),workroe(ixg^t,6), &
359  workroe(ixg^t,7),workroe(ixg^t,14),workroe(ixg^t,15))
360 
361  end subroutine mhd_rtimes
362 
363  ! Multiply q by R(il,iw), where R is the right eigenvalue matrix at wroe
364  subroutine rtimes2(q,wroe,ix^L,iw,il,idim,rq, &
365  cfast,cslow,afast,aslow,csound2,dp,rhodv,bv,v2a2)
367 
368  integer :: ix^L,iw,il,idim,idir,jdir
369  double precision :: wroe(ixG^T,nw)
370  double precision, dimension(ixG^T) :: q,rq
371  double precision, dimension(ixG^T) :: cfast,cslow,afast,aslow,csound2,dp,rhodv
372  double precision, dimension(ixG^T) :: bv,v2a2
373 
374  idir=idim+1-ndir*(idim/ndir)
375  jdir=idir+1-ndir*(idir/ndir)
376 
377  if(iw == rho_) then
378  select case(il)
379  case(fastrw_,fastlw_)
380  rq(ix^s)=q(ix^s)*afast(ix^s)
381  case(slowrw_,slowlw_)
382  rq(ix^s)=q(ix^s)*aslow(ix^s)
383  case(entrow_)
384  rq(ix^s)=q(ix^s)
385  case(diverw_,alfvrw_,alfvlw_)
386  rq(ix^s)=zero
387  end select
388  else if(iw == e_) then
389  if(il==fastrw_)then
390  ! Store 0.5*v**2+(2-gamma)/(gamma-1)*a**2
391  v2a2(ix^s)=half*sum(wroe(ix^s,mom(:))**2,dim=ndim+1)+ &
392  (two-mhd_gamma)/(mhd_gamma-one)*csound2(ix^s)
393  ! Store sgn(bx)*(betay*vy+betaz*vz) in bv
394  bv(ix^s)=wroe(ix^s,mag(idir))*wroe(ix^s,mom(idir))
395  if(ndir==3)bv(ix^s)=bv(ix^s)+wroe(ix^s,mag(jdir))*wroe(ix^s,mom(jdir))
396  bv(ix^s)=bv(ix^s)*sign(one,wroe(ix^s,mag(idim)))
397  else if(il==alfvrw_)then
398  !Store betaz*vy-betay*vz in bv
399  bv(ix^s)=(wroe(ix^s,mag(jdir))*wroe(ix^s,mom(idir))-&
400  wroe(ix^s,mag(idir))*wroe(ix^s,mom(jdir)))
401  endif
402 
403  select case(il)
404  case(fastrw_)
405  rq(ix^s)=q(ix^s)*(-aslow(ix^s)*cslow(ix^s)*bv(ix^s)+afast(ix^s)*&
406  (v2a2(ix^s)+cfast(ix^s)*(cfast(ix^s)+wroe(ix^s,mom(idim)))))
407  case(fastlw_)
408  rq(ix^s)=q(ix^s)*(+aslow(ix^s)*cslow(ix^s)*bv(ix^s)+afast(ix^s)*&
409  (v2a2(ix^s)+cfast(ix^s)*(cfast(ix^s)-wroe(ix^s,mom(idim)))))
410  case(slowrw_)
411  rq(ix^s)=q(ix^s)*(+afast(ix^s)*cfast(ix^s)*bv(ix^s)+aslow(ix^s)*&
412  (v2a2(ix^s)+cslow(ix^s)*(cslow(ix^s)+wroe(ix^s,mom(idim)))))
413  case(slowlw_)
414  rq(ix^s)=q(ix^s)*(-afast(ix^s)*cfast(ix^s)*bv(ix^s)+aslow(ix^s)*&
415  (v2a2(ix^s)+cslow(ix^s)*(cslow(ix^s)-wroe(ix^s,mom(idim)))))
416  case(entrow_)
417  rq(ix^s)= q(ix^s)*half*sum(wroe(ix^s,mom(:))**2,dim=ndim+1)
418  case(diverw_)
419  if(divbwave)then
420  rq(ix^s)= q(ix^s)*wroe(ix^s,mag(idim))
421  else
422  rq(ix^s)= zero
423  endif
424  case(alfvrw_)
425  rq(ix^s)=+q(ix^s)*bv(ix^s)
426  case(alfvlw_)
427  rq(ix^s)=-q(ix^s)*bv(ix^s)
428  end select
429  else if(any(mom(:)==iw)) then
430  if(iw==mom(idim))then
431  select case(il)
432  case(fastrw_)
433  rq(ix^s)=q(ix^s)*afast(ix^s)*(wroe(ix^s,iw)+cfast(ix^s))
434  case(fastlw_)
435  rq(ix^s)=q(ix^s)*afast(ix^s)*(wroe(ix^s,iw)-cfast(ix^s))
436  case(slowrw_)
437  rq(ix^s)=q(ix^s)*aslow(ix^s)*(wroe(ix^s,iw)+cslow(ix^s))
438  case(slowlw_)
439  rq(ix^s)=q(ix^s)*aslow(ix^s)*(wroe(ix^s,iw)-cslow(ix^s))
440  case(entrow_)
441  rq(ix^s)=q(ix^s)*wroe(ix^s,iw)
442  case(diverw_,alfvlw_,alfvrw_)
443  rq(ix^s)=zero
444  end select
445  else
446  select case(il)
447  case(fastrw_)
448  rq(ix^s)=q(ix^s)*(afast(ix^s)*wroe(ix^s,iw)-aslow(ix^s)*&
449  cslow(ix^s)*wroe(ix^s,mag(1)-mom(1)+iw)*sign(one,wroe(ix^s,mag(idim))))
450  case(fastlw_)
451  rq(ix^s)=q(ix^s)*(afast(ix^s)*wroe(ix^s,iw)+aslow(ix^s)*&
452  cslow(ix^s)*wroe(ix^s,mag(1)-mom(1)+iw)*sign(one,wroe(ix^s,mag(idim))))
453  case(slowrw_)
454  rq(ix^s)=q(ix^s)*(aslow(ix^s)*wroe(ix^s,iw)+afast(ix^s)*&
455  cfast(ix^s)*wroe(ix^s,mag(1)-mom(1)+iw)*sign(one,wroe(ix^s,mag(idim))))
456  case(slowlw_)
457  rq(ix^s)=q(ix^s)*(aslow(ix^s)*wroe(ix^s,iw)-afast(ix^s)*&
458  cfast(ix^s)*wroe(ix^s,mag(1)-mom(1)+iw)*sign(one,wroe(ix^s,mag(idim))))
459  case(entrow_)
460  rq(ix^s)=q(ix^s)*wroe(ix^s,iw)
461  case(diverw_)
462  rq(ix^s)=zero
463  case(alfvrw_)
464  if(iw==mom(idir))then
465  rq(ix^s)=+q(ix^s)*wroe(ix^s,mag(jdir))
466  else
467  rq(ix^s)=-q(ix^s)*wroe(ix^s,mag(idir))
468  endif
469  case(alfvlw_)
470  if(iw==mom(idir))then
471  rq(ix^s)=-q(ix^s)*wroe(ix^s,mag(jdir))
472  else
473  rq(ix^s)=+q(ix^s)*wroe(ix^s,mag(idir))
474  endif
475  end select
476  end if ! iw=m_idir,m_jdir
477  else if(any(mag(:)==iw)) then
478  if(iw==mag(idim))then
479  if(il==diverw_ .and. divbwave)then
480  rq(ix^s)=q(ix^s)
481  else
482  rq(ix^s)=zero
483  endif
484  else
485  select case(il)
486  case(fastrw_,fastlw_)
487  rq(ix^s)=+q(ix^s)*aslow(ix^s)*dsqrt(csound2(ix^s))*wroe(ix^s,iw)&
488  /wroe(ix^s,rho_)
489  case(slowrw_,slowlw_)
490  rq(ix^s)=-q(ix^s)*afast(ix^s)*dsqrt(csound2(ix^s))*wroe(ix^s,iw)&
491  /wroe(ix^s,rho_)
492  case(entrow_,diverw_)
493  rq(ix^s)=zero
494  case(alfvrw_,alfvlw_)
495  if(iw==mag(idir))then
496  rq(ix^s)=-q(ix^s)*wroe(ix^s,mag(jdir))&
497  /sign(wroe(ix^s,rho_),wroe(ix^s,mag(idim)))
498  else
499  rq(ix^s)=+q(ix^s)*wroe(ix^s,mag(idir))&
500  /sign(wroe(ix^s,rho_),wroe(ix^s,mag(idim)))
501  end if
502  end select
503  end if ! iw=b_idir,b_jdir
504  end if
505 
506  end subroutine rtimes2
507 
508 end module mod_mhd_roe
integer, dimension(:), allocatable, public mag
Indices of the magnetic field.
This module contains definitions of global parameters and variables and some generic functions/subrou...
character(len=std_len), dimension(:), allocatable typeentropy
Which type of entropy fix to use with Riemann-type solvers.
integer, parameter ndim
Number of spatial dimensions for grid variables.
integer ndir
Number of spatial dimensions (components) for vector variables.
double precision, dimension(:), allocatable entropycoef
Magneto-hydrodynamics module.
Definition: mod_mhd_phys.t:2
integer, dimension(:), allocatable, public, protected mom
Indices of the momentum density.
Definition: mod_mhd_phys.t:69
double precision, public mhd_adiab
The adiabatic constant.
Definition: mod_mhd_phys.t:20
double precision, public mhd_gamma
The adiabatic index.
Definition: mod_mhd_phys.t:18
logical, public, protected mhd_energy
Whether an energy equation is used.
Definition: mod_mhd_phys.t:107
logical, public divbwave
Add divB wave in Roe solver.
Definition: mod_mhd_phys.t:170
integer, public, protected p_
Index of the gas pressure (-1 if not present) should equal e_.
Definition: mod_mhd_phys.t:77
integer, public, protected rho_
Index of the density (in the w array)
Definition: mod_mhd_phys.t:67
procedure(sub_get_pthermal), pointer, public mhd_get_pthermal
Definition: mod_mhd_phys.t:219
integer, public, protected e_
Index of the energy density (-1 if not present)
Definition: mod_mhd_phys.t:73
Subroutines for Roe-type Riemann solver for MHD.
Definition: mod_mhd_roe.t:2
subroutine average2(wL, wR, x, ixL, idim, wroe, cfast, cslow, afast, aslow, csound2, dp, rhodv, tmp)
Definition: mod_mhd_roe.t:70
subroutine mhd_get_eigenjump(wL, wR, wroe, x, ixL, il, idim, smalla, a, jump, workroe)
Definition: mod_mhd_roe.t:178
subroutine, public mhd_roe_init()
Definition: mod_mhd_roe.t:18
subroutine rtimes2(q, wroe, ixL, iw, il, idim, rq, cfast, cslow, afast, aslow, csound2, dp, rhodv, bv, v2a2)
Definition: mod_mhd_roe.t:366
subroutine mhd_average(wL, wR, x, ixL, idim, wroe, workroe)
Definition: mod_mhd_roe.t:48
subroutine geteigenjump2(wL, wR, wroe, x, ixL, il, idim, smalla, a, jump, cfast, cslow, afast, aslow, csound2, dp, rhodv, bdv, bdb, cs2L, cs2R, cs2ca2L, cs2ca2R)
Definition: mod_mhd_roe.t:206
subroutine mhd_rtimes(q, w, ixL, iw, il, idim, rq, workroe)
Definition: mod_mhd_roe.t:349
procedure(sub_rtimes), pointer phys_rtimes
procedure(sub_get_eigenjump), pointer phys_get_eigenjump
procedure(sub_average), pointer phys_average
Subroutines for TVD-MUSCL schemes.
Definition: mod_tvd.t:2
subroutine, public entropyfix(ixL, il, aL, aR, a, smalla)
Definition: mod_tvd.t:265