MPI-AMRVAC  3.1
The MPI - Adaptive Mesh Refinement - Versatile Advection Code (development version)
Data Types | Functions/Subroutines | Variables
mod_thermal_conduction Module Reference

Thermal conduction for HD and MHD or RHD and RMHD or twofl (plasma-neutral) module Adaptation of mod_thermal_conduction for the mod_supertimestepping. More...

Data Types

interface  get_var_subr
 
type  tc_fluid
 

Functions/Subroutines

subroutine tc_init_params (phys_gamma)
 
subroutine, public tc_get_mhd_params (fl, read_mhd_params)
 Init TC coefficients: MHD case. More...
 
subroutine, public tc_get_hd_params (fl, read_hd_params)
 Init TC coefficients: HD case. More...
 
subroutine, public tc_get_ffhd_params (fl, read_ffhd_params)
 
double precision function, public get_tc_dt_mhd (w, ixIL, ixOL, dxD, x, fl)
 Get the explicut timestep for the TC (mhd implementation) More...
 
subroutine, public sts_set_source_tc_mhd (ixIL, ixOL, w, x, wres, fix_conserve_at_step, my_dt, igrid, nflux, fl)
 anisotropic thermal conduction with slope limited symmetric scheme Sharma 2007 Journal of Computational Physics 227, 123 More...
 
subroutine set_source_tc_mhd (ixIL, ixOL, w, x, fl, qvec, rho, Te, alpha)
 
double precision function, dimension(ixi^s) slope_limiter (f, ixIL, ixOL, idims, pm, tc_slope_limiter)
 
subroutine gradientc (q, x, ixIL, ixOL, idir, gradq)
 Calculate gradient of a scalar q at cell interfaces in direction idir. More...
 
double precision function, public get_tc_dt_hd (w, ixIL, ixOL, dxD, x, fl)
 Get the explicit timestep for the TC (hd implementation) More...
 
subroutine, public sts_set_source_tc_hd (ixIL, ixOL, w, x, wres, fix_conserve_at_step, my_dt, igrid, nflux, fl)
 
subroutine set_source_tc_hd (ixIL, ixOL, w, x, fl, qvec, rho, Te)
 
double precision function, public get_tc_dt_ffhd (w, ixIL, ixOL, dxD, x, fl)
 Get the explicut timestep for the TC (ffhd implementation) More...
 
subroutine, public sts_set_source_tc_ffhd (ixIL, ixOL, w, x, wres, fix_conserve_at_step, my_dt, igrid, nflux, fl)
 anisotropic thermal conduction with slope limited symmetric scheme Sharma 2007 Journal of Computational Physics 227, 123 More...
 
subroutine set_source_tc_ffhd (ixIL, ixOL, w, x, fl, qvec, rho, Te, alpha)
 

Variables

double precision tc_gamma_1
 The adiabatic index. More...
 

Detailed Description

Thermal conduction for HD and MHD or RHD and RMHD or twofl (plasma-neutral) module Adaptation of mod_thermal_conduction for the mod_supertimestepping.

The TC is set by calling tc_init_params()

Organized such that it can call either isotropic (HD) or anisotropic (MHD) variants it adds a heat conduction source to each energy equation and can be recycled within a multi-fluid context (such as plasma-neutral twofl module)

10.07.2011 developed by Chun Xia and Rony Keppens 01.09.2012 moved to modules folder by Oliver Porth 13.10.2013 optimized further by Chun Xia 12.03.2014 implemented RKL2 super timestepping scheme to reduce iterations and improve stability and accuracy up to second order in time by Chun Xia. 23.08.2014 implemented saturation and perpendicular TC by Chun Xia 12.01.2017 modulized by Chun Xia adapted by Beatrice Popescu to twofluid settings 06.09.2024 cleaned up for use in rhd and rmhd modules (Nishant Narechania and Rony Keppens)

PURPOSE: IN MHD ADD THE HEAT CONDUCTION SOURCE TO THE ENERGY EQUATION S=DIV(KAPPA_i,j . GRAD_j T) where KAPPA_i,j = tc_k_para b_i b_j + tc_k_perp (I - b_i b_j) b_i b_j = B_i B_j / B**2, I is the unit matrix, and i, j= 1, 2, 3 for 3D IN HD ADD THE HEAT CONDUCTION SOURCE TO THE ENERGY EQUATION S=DIV(tc_k_para . GRAD T) USAGE:

  1. in mod_usr.t -> subroutine usr_init(), add unit_length=your length unit unit_numberdensity=your number density unit unit_velocity=your velocity unit unit_temperature=your temperature unit before call (m)hd_activate()
  2. to switch on thermal conduction in the (r)(m)hd_list of amrvac.par add: (r)(m)hd_thermal_conduction=.true.
  3. in the tc_list of amrvac.par : tc_perpendicular=.true. ! (default .false.) turn on thermal conduction perpendicular to magnetic field tc_saturate=.true. ! (default .false. ) turn on thermal conduction saturate effect tc_slope_limiter='MC' ! choose limiter for slope-limited anisotropic thermal conduction in MHD note: twofl_list incorporates instances for charges and neutrals

Function/Subroutine Documentation

◆ get_tc_dt_ffhd()

double precision function, public mod_thermal_conduction::get_tc_dt_ffhd ( double precision, dimension(ixi^s,1:nw), intent(in)  w,
integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
double precision, intent(in)  dx,
double precision, intent(in)  D,
double precision, dimension(ixi^s,1:ndim), intent(in)  x,
type(tc_fluid), intent(in)  fl 
)

Get the explicut timestep for the TC (ffhd implementation)

Definition at line 1157 of file mod_thermal_conduction.t.

◆ get_tc_dt_hd()

double precision function, public mod_thermal_conduction::get_tc_dt_hd ( double precision, dimension(ixi^s,1:nw), intent(in)  w,
integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
double precision, intent(in)  dx,
double precision, intent(in)  D,
double precision, dimension(ixi^s,1:ndim), intent(in)  x,
type(tc_fluid), intent(in)  fl 
)

Get the explicit timestep for the TC (hd implementation)

Definition at line 939 of file mod_thermal_conduction.t.

◆ get_tc_dt_mhd()

double precision function, public mod_thermal_conduction::get_tc_dt_mhd ( double precision, dimension(ixi^s,1:nw), intent(in)  w,
integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
double precision, intent(in)  dx,
integer, intent(in)  D,
double precision, dimension(ixi^s,1:ndim), intent(in)  x,
type(tc_fluid), intent(in)  fl 
)

Get the explicut timestep for the TC (mhd implementation)

Definition at line 222 of file mod_thermal_conduction.t.

Here is the call graph for this function:

◆ gradientc()

subroutine mod_thermal_conduction::gradientc ( double precision, dimension(ixi^s), intent(in)  q,
double precision, dimension(ixi^s,1:ndim), intent(in)  x,
integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
integer, intent(in)  idir,
double precision, dimension(ixi^s), intent(inout)  gradq 
)

Calculate gradient of a scalar q at cell interfaces in direction idir.

Definition at line 900 of file mod_thermal_conduction.t.

◆ set_source_tc_ffhd()

subroutine mod_thermal_conduction::set_source_tc_ffhd ( integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
double precision, dimension(ixi^s,1:nw), intent(in)  w,
double precision, dimension(ixi^s,1:ndim), intent(in)  x,
type(tc_fluid), intent(in)  fl,
double precision, dimension(ixi^s,1:ndim), intent(out)  qvec,
double precision, dimension(ixi^s), intent(in)  rho,
double precision, dimension(ixi^s), intent(in)  Te,
double precision, intent(in)  alpha 
)

Definition at line 1283 of file mod_thermal_conduction.t.

Here is the call graph for this function:

◆ set_source_tc_hd()

subroutine mod_thermal_conduction::set_source_tc_hd ( integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
double precision, dimension(ixi^s,1:nw), intent(in)  w,
double precision, dimension(ixi^s,1:ndim), intent(in)  x,
type(tc_fluid), intent(in)  fl,
double precision, dimension(ixi^s,1:ndim), intent(out)  qvec,
double precision, dimension(ixi^s), intent(in)  rho,
double precision, dimension(ixi^s), intent(in)  Te 
)

Definition at line 1061 of file mod_thermal_conduction.t.

Here is the call graph for this function:

◆ set_source_tc_mhd()

subroutine mod_thermal_conduction::set_source_tc_mhd ( integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
double precision, dimension(ixi^s,1:nw), intent(in)  w,
double precision, dimension(ixi^s,1:ndim), intent(in)  x,
type(tc_fluid), intent(in)  fl,
double precision, dimension(ixi^s,1:ndim), intent(out)  qvec,
double precision, dimension(ixi^s), intent(in)  rho,
double precision, dimension(ixi^s), intent(in)  Te,
double precision, intent(in)  alpha 
)

Definition at line 391 of file mod_thermal_conduction.t.

Here is the call graph for this function:

◆ slope_limiter()

double precision function, dimension(ixi^s) mod_thermal_conduction::slope_limiter ( double precision, dimension(ixi^s), intent(in)  f,
integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
integer, intent(in)  idims,
integer, intent(in)  pm,
integer, intent(in)  tc_slope_limiter 
)

Definition at line 863 of file mod_thermal_conduction.t.

◆ sts_set_source_tc_ffhd()

subroutine, public mod_thermal_conduction::sts_set_source_tc_ffhd ( integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
double precision, dimension(ixi^s,1:nw), intent(in)  w,
double precision, dimension(ixi^s,1:ndim), intent(in)  x,
double precision, dimension(ixi^s,1:nw), intent(inout)  wres,
logical, intent(in)  fix_conserve_at_step,
double precision, intent(in)  my_dt,
integer, intent(in)  igrid,
integer, intent(in)  nflux,
type(tc_fluid), intent(in)  fl 
)

anisotropic thermal conduction with slope limited symmetric scheme Sharma 2007 Journal of Computational Physics 227, 123

Definition at line 1227 of file mod_thermal_conduction.t.

Here is the call graph for this function:

◆ sts_set_source_tc_hd()

subroutine, public mod_thermal_conduction::sts_set_source_tc_hd ( integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
double precision, dimension(ixi^s,1:nw), intent(in)  w,
double precision, dimension(ixi^s,1:ndim), intent(in)  x,
double precision, dimension(ixi^s,1:nw), intent(inout)  wres,
logical, intent(in)  fix_conserve_at_step,
double precision, intent(in)  my_dt,
integer, intent(in)  igrid,
integer, intent(in)  nflux,
type(tc_fluid), intent(in)  fl 
)

Definition at line 997 of file mod_thermal_conduction.t.

Here is the call graph for this function:

◆ sts_set_source_tc_mhd()

subroutine, public mod_thermal_conduction::sts_set_source_tc_mhd ( integer, intent(in)  ixI,
integer, intent(in)  L,
integer, intent(in)  ixO,
  L,
double precision, dimension(ixi^s,1:nw), intent(in)  w,
double precision, dimension(ixi^s,1:ndim), intent(in)  x,
double precision, dimension(ixi^s,1:nw), intent(inout)  wres,
logical, intent(in)  fix_conserve_at_step,
double precision, intent(in)  my_dt,
integer, intent(in)  igrid,
integer, intent(in)  nflux,
type(tc_fluid), intent(in)  fl 
)

anisotropic thermal conduction with slope limited symmetric scheme Sharma 2007 Journal of Computational Physics 227, 123

Definition at line 311 of file mod_thermal_conduction.t.

Here is the call graph for this function:

◆ tc_get_ffhd_params()

subroutine, public mod_thermal_conduction::tc_get_ffhd_params ( type(tc_fluid), intent(inout)  fl,
  read_ffhd_params 
)

Read tc parameters from par file: ffHD case

Definition at line 191 of file mod_thermal_conduction.t.

◆ tc_get_hd_params()

subroutine, public mod_thermal_conduction::tc_get_hd_params ( type(tc_fluid), intent(inout)  fl,
  read_hd_params 
)

Init TC coefficients: HD case.

Read tc parameters from par file: HD case

Definition at line 160 of file mod_thermal_conduction.t.

◆ tc_get_mhd_params()

subroutine, public mod_thermal_conduction::tc_get_mhd_params ( type(tc_fluid), intent(inout)  fl,
  read_mhd_params 
)

Init TC coefficients: MHD case.

Read tc module parameters from par file: MHD case

Definition at line 119 of file mod_thermal_conduction.t.

◆ tc_init_params()

subroutine mod_thermal_conduction::tc_init_params ( double precision, intent(in)  phys_gamma)

Definition at line 111 of file mod_thermal_conduction.t.

Variable Documentation

◆ tc_gamma_1

double precision mod_thermal_conduction::tc_gamma_1

The adiabatic index.

Definition at line 51 of file mod_thermal_conduction.t.