MPI-AMRVAC  3.1
The MPI - Adaptive Mesh Refinement - Versatile Advection Code (development version)
mod_b0.t
Go to the documentation of this file.
1 module mod_b0
2  implicit none
3  private
4  public :: set_b0_grid
5 
6 contains
7 
8  subroutine set_b0_grid(igrid)
10  integer, intent(in) :: igrid
11  integer :: ixcog^l
12 
13  ixcogmin^d=1;
14  ixcogmax^d=(ixghi^d-2*nghostcells)/2+2*nghostcells;
15 
16  call set_b0_cell(ps(igrid)%B0(ixg^t,:,0),ps(igrid)%x,ixg^ll,ixg^ll)
17  if(b0fieldalloccoarse) call set_b0_cell(psc(igrid)%B0(ixcog^s,:,0),psc(igrid)%x,ixcog^l,ixcog^l)
18  call set_j0_cell(igrid,ps(igrid)%J0,ixg^ll,ixm^ll^ladd1)
19  call set_b0_face(igrid,ps(igrid)%x,ixg^ll,ixm^ll)
20  end subroutine set_b0_grid
21 
22  subroutine set_b0_cell(wB0,x,ixI^L,ix^L)
23  use mod_usr_methods, only: usr_set_b0
25  use mod_geometry
26 
27  integer, intent(in):: ixI^L,ix^L
28  double precision, intent(inout) :: wB0(ixI^S,1:ndir)
29  double precision, intent(in) :: x(ixI^S,1:ndim)
30 
31  wb0(ix^s,1:ndir)=zero
32 
33  ! approximate cell-averaged B0 as cell-centered B0
34  select case (coordinate)
35  case (spherical)
36  {^nooned
37  if (dabs(bdip)>smalldouble) then
38  wb0(ix^s,1)=2.0d0*bdip*dcos(x(ix^s,2))/x(ix^s,1)**3
39  wb0(ix^s,2)=bdip*dsin(x(ix^s,2))/x(ix^s,1)**3
40  end if
41 
42  if (abs(bquad)>smalldouble) then
43  wb0(ix^s,1)=wb0(ix^s,1) &
44  +bquad*0.5d0*(1.0d0+3.0d0*dcos(2.0d0*x(ix^s,2)))/x(ix^s,1)**4
45  wb0(ix^s,2)=wb0(ix^s,2)+bquad*dsin(2.0d0*x(ix^s,2))/x(ix^s,1)**4
46  end if
47  if (abs(boct)>smalldouble) then
48  wb0(ix^s,1)=wb0(ix^s,1) &
49  +boct*(10.0d0*dcos(2.0d0*x(ix^s,2))-2.0d0) &
50  *dcos(x(ix^s,2))/x(ix^s,1)**5
51  wb0(ix^s,2)=wb0(ix^s,2) &
52  +boct*1.5d0*(3.0d0+5.0d0*dcos(2.0d0*x(ix^s,2))) &
53  *dsin(x(ix^s,2))/x(ix^s,1)**5
54  end if
55  }
56  end select
57  if (associated(usr_set_b0)) call usr_set_b0(ixi^l,ix^l,x,wb0)
58  end subroutine set_b0_cell
59 
60  subroutine set_j0_cell(igrid,wJ0,ixI^L,ix^L)
61  use mod_usr_methods, only: usr_set_j0
63  use mod_geometry
64 
65  integer, intent(in):: igrid,ixI^L,ix^L
66  double precision, intent(inout) :: wJ0(ixI^S,7-2*ndir:3)
67  integer :: idirmin0, idirmin
68 
69  if(associated(usr_set_j0)) then
70  call usr_set_j0(ixi^l,ix^l,ps(igrid)%x,wj0)
71  else
72  idirmin0 = 7-2*ndir
73  call curlvector(ps(igrid)%B0(ixi^s,:,0),ixi^l,ix^l,wj0,idirmin,idirmin0,ndir)
74  end if
75  end subroutine set_j0_cell
76 
77  subroutine set_b0_face(igrid,x,ixI^L,ixO^L)
79 
80  integer, intent(in) :: igrid, ixI^L, ixO^L
81  double precision, intent(in) :: x(ixI^S,1:ndim)
82 
83  double precision :: delx(ixI^S,1:ndim)
84  double precision :: xC(ixI^S,1:ndim),xshift^D
85  integer :: idims, ixC^L, hxO^L, ix, idims2
86 
87  if(slab_uniform)then
88  ^d&delx(ixi^s,^d)=rnode(rpdx^d_,igrid)\
89  else
90  ! for all non-cartesian and stretched cartesian coordinates
91  delx(ixi^s,1:ndim)=ps(igrid)%dx(ixi^s,1:ndim)
92  endif
93 
94  do idims=1,ndim
95  hxo^l=ixo^l-kr(idims,^d);
96  if(stagger_grid) then
97  ! ct needs all transverse cells
98  ixcmax^d=ixomax^d+nghostcells-nghostcells*kr(idims,^d); ixcmin^d=hxomin^d-nghostcells+nghostcells*kr(idims,^d);
99  else
100  ! ixC is centered index in the idims direction from ixOmin-1/2 to ixOmax+1/2
101  ixcmax^d=ixomax^d; ixcmin^d=hxomin^d;
102  end if
103  ! always xshift=0 or 1/2
104  xshift^d=half*(one-kr(^d,idims));
105  do idims2=1,ndim
106  select case(idims2)
107  {case(^d)
108  do ix = ixc^lim^d
109  ! xshift=half: this is the cell center coordinate
110  ! xshift=0: this is the cell edge i+1/2 coordinate
111  xc(ix^d%ixC^s,^d)=x(ix^d%ixC^s,^d)+(half-xshift^d)*delx(ix^d%ixC^s,^d)
112  end do\}
113  end select
114  end do
115  call set_b0_cell(ps(igrid)%B0(ixi^s,:,idims),xc,ixi^l,ixc^l)
116  end do
117  end subroutine set_b0_face
118 end module mod_b0
119 
Definition: mod_b0.t:1
subroutine, public set_b0_grid(igrid)
Definition: mod_b0.t:9
subroutine set_b0_cell(wB0, x, ixIL, ixL)
Definition: mod_b0.t:23
subroutine set_b0_face(igrid, x, ixIL, ixOL)
Definition: mod_b0.t:78
subroutine set_j0_cell(igrid, wJ0, ixIL, ixL)
Definition: mod_b0.t:61
Module with geometry-related routines (e.g., divergence, curl)
Definition: mod_geometry.t:2
integer coordinate
Definition: mod_geometry.t:7
integer, parameter spherical
Definition: mod_geometry.t:11
subroutine curlvector(qvec, ixIL, ixOL, curlvec, idirmin, idirmin0, ndir0, fourthorder)
Calculate curl of a vector qvec within ixL Options to employ standard second order CD evaluations use...
Definition: mod_geometry.t:664
This module contains definitions of global parameters and variables and some generic functions/subrou...
integer ixghi
Upper index of grid block arrays.
integer, dimension(3, 3) kr
Kronecker delta tensor.
logical stagger_grid
True for using stagger grid.
double precision bdip
amplitude of background dipolar, quadrupolar, octupolar, user's field
double precision, dimension(:), allocatable, parameter d
integer ixm
the mesh range of a physical block without ghost cells
double precision, dimension(:,:), allocatable rnode
Corner coordinates.
integer nghostcells
Number of ghost cells surrounding a grid.
logical slab_uniform
uniform Cartesian geometry or not (stretched Cartesian)
Module with all the methods that users can customize in AMRVAC.
procedure(set_j0), pointer usr_set_j0
procedure(set_b0), pointer usr_set_b0