MPI-AMRVAC  3.1
The MPI - Adaptive Mesh Refinement - Versatile Advection Code (development version)
mod_dt.t
Go to the documentation of this file.
1 module mod_dt
2  implicit none
3  private
4  public :: setdt
5 
6 contains
7  !>setdt - set dt for all levels between levmin and levmax.
8  !> dtpar>0 --> use fixed dtpar for all level
9  !> dtpar<=0 --> determine CFL limited timestep
10  subroutine setdt()
12  use mod_physics
13  use mod_usr_methods, only: usr_get_dt
15  use mod_comm_lib, only: mpistop
16 
17  integer :: iigrid, igrid, ncycle, ncycle2, ifile, idim
18  double precision :: dtnew, qdtnew, dtmin_mype, factor, dx^d, dxmin^d
19  double precision :: dtmax, dxmin, cmax_mype
20  double precision :: a2max_mype(ndim), cs2max_mype, tco_mype, tco_global, tmax_mype, t_peak
21  double precision :: trac_alfa, trac_dmax, trac_tau, t_bott
22  integer, parameter :: niter_print = 2000
23 
24  if (dtpar<=zero) then
25  dtmin_mype = bigdouble
26  cmax_mype = zero
27  a2max_mype = zero
28  cs2max_mype = zero
29  tco_mype = zero
30  tmax_mype = zero
31  !$OMP PARALLEL DO PRIVATE(igrid,qdtnew,dtnew,dx^D) REDUCTION(min:dtmin_mype) REDUCTION(max:cmax_mype,a2max_mype,cs2max_mype)
32  do iigrid=1,igridstail_active; igrid=igrids_active(iigrid);
33  dtnew=bigdouble
34  dx^d=rnode(rpdx^d_,igrid);
35  ^d&dxlevel(^d)=rnode(rpdx^d_,igrid);
36  block=>ps(igrid)
37  if(local_timestep) then
38  ps(igrid)%dt(ixm^t)=bigdouble
39  endif
40  call getdt_courant(ps(igrid)%w,ixg^ll,ixm^ll,qdtnew,dx^d,ps(igrid)%x,&
41  cmax_mype,a2max_mype,cs2max_mype)
42  dtnew=min(dtnew,qdtnew)
43 
44  call phys_get_dt(ps(igrid)%w,ixg^ll,ixm^ll,qdtnew,dx^d,ps(igrid)%x)
45  dtnew=min(dtnew,qdtnew)
46 
47  if (associated(usr_get_dt)) then
48  call usr_get_dt(ps(igrid)%w,ixg^ll,ixm^ll,qdtnew,dx^d,ps(igrid)%x)
49  dtnew = min(dtnew,qdtnew)
50  end if
51  dtmin_mype = min(dtmin_mype,dtnew)
52  end do
53  !$OMP END PARALLEL DO
54  else
55  dtmin_mype=dtpar
56  end if
57 
58  if (dtmin_mype<dtmin) then
59  write(unitterm,*)"Error: Time step too small!", dtmin_mype
60  write(unitterm,*)"on processor:", mype, "at time:", global_time," step:", it
61  write(unitterm,*)"Lower limit of time step:", dtmin
62  crash=.true.
63  end if
64 
65  if (slowsteps>it-it_init+1) then
66  factor=one-(one-dble(it-it_init+1)/dble(slowsteps))**2
67  dtmin_mype=dtmin_mype*factor
68  end if
69 
70  if(final_dt_reduction)then
71  !if (dtmin_mype>time_max-global_time) then
72  ! write(unitterm,*)"WARNING final timestep artificially reduced!"
73  ! write(unitterm,*)"on processor:", mype, "at time:", global_time," step:", it
74  !endif
75  if(time_max-global_time<=dtmin) then
76  !write(unitterm,*)'Forcing to leave timeloop as time is reached!'
77  final_dt_exit=.true.
78  endif
79  dtmin_mype=min(dtmin_mype,time_max-global_time)
80  end if
81 
82  if (dtpar<=zero) then
83  call mpi_allreduce(dtmin_mype,dt,1,mpi_double_precision,mpi_min, &
84  icomm,ierrmpi)
85  else
86  dt=dtmin_mype
87  end if
88 
89  if(any(dtsave(1:nfile)<bigdouble).or.any(tsave(isavet(1:nfile),1:nfile)<bigdouble))then
90  dtmax = minval(ceiling(global_time/dtsave(1:nfile))*dtsave(1:nfile))-global_time
91  do ifile=1,nfile
92  dtmax = min(tsave(isavet(ifile),ifile)-global_time,dtmax)
93  end do
94  if(dtmax > smalldouble)then
95  dt=min(dt,dtmax)
96  else
97  ! dtmax=0 means dtsave is divisible by global_time
98  dt=min(dt,minval(dtsave(1:nfile)))
99  end if
100  end if
101 
102  if(mype==0) then
103  if(any(dtsave(1:nfile)<dt)) then
104  write(unitterm,*) 'Warning: timesteps: ',dt,' exceeding output intervals ', dtsave(1:nfile)
105  endif
106  endif
107  if(is_sts_initialized()) then
109  qdtnew = 0.5d0 * dt
110  if (set_dt_sts_ncycles(qdtnew)) then
111  dt = 2.d0*qdtnew
112  !a quick way to print the reduction of time only every niter_print iterations
113  !Note that niter_print is a parameter variable hardcoded to the value of 200
114  if(mype==0 .and. mod(it-1, niter_print) .eq. 0) then
115  write(*,*) 'Max number of STS cycles exceeded, reducing dt to',dt
116  endif
117  endif
118  else
119  if(set_dt_sts_ncycles(dt))then
120  if(mype==0 .and. mod(it-1, niter_print) .eq. 0) then
121  write(*,*) 'Max number of STS cycles exceeded, reducing dt to',dt
122  endif
123  endif
124  endif
125  endif
126 
127  ! global Lax-Friedrich finite difference flux splitting needs fastest wave-speed
128  ! so does GLM:
129  if(need_global_cmax) call mpi_allreduce(cmax_mype, cmax_global, 1,&
130  mpi_double_precision,mpi_max,icomm,ierrmpi)
131  if(need_global_a2max) call mpi_allreduce(a2max_mype, a2max_global, ndim,&
132  mpi_double_precision,mpi_max,icomm,ierrmpi)
133  if(need_global_cs2max) call mpi_allreduce(cs2max_mype, cs2max_global, 1,&
134  mpi_double_precision,mpi_max,icomm,ierrmpi)
135 
136  ! transition region adaptive thermal conduction (Johnston 2019 ApJL, 873, L22)
137  ! transition region adaptive thermal conduction (Johnston 2020 A&A, 635, 168)
138  if(phys_trac) then
139  t_bott=2.d4/unit_temperature
140  call mpi_allreduce(tmax_mype,t_peak,1,mpi_double_precision,&
141  mpi_max,icomm,ierrmpi)
142  ! TODO trac stuff should not be here at all
143  if(phys_trac_type==1) then
144  !> 1D TRAC method
145  trac_dmax=0.1d0
146  trac_tau=1.d0/unit_time
147  trac_alfa=trac_dmax**(dt/trac_tau)
148  tco_global=zero
149  {^ifoned
150  call mpi_allreduce(tco_mype,tco_global,1,mpi_double_precision,&
151  mpi_max,icomm,ierrmpi)
152  }
153  endif
154  if(.not. associated(phys_trac_after_setdt)) call mpistop("phys_trac_after_setdt not set")
155  ! trac_alfa,tco_global are set only for phys_trac_type=1, should not be a problem when not initialized
156  ! side effect of modifying T_bott from mod_trac -> T_bott sent as param
157  call phys_trac_after_setdt(tco_global,trac_alfa,t_peak, t_bott)
158  end if
159 
160  contains
161 
162  !> compute CFL limited dt (for variable time stepping)
163  subroutine getdt_courant(w,ixI^L,ixO^L,dtnew,dx^D,x,cmax_mype,a2max_mype,cs2max_mype)
167 
168  integer, intent(in) :: ixI^L, ixO^L
169  double precision, intent(in) :: x(ixI^S,1:ndim)
170  double precision, intent(in) :: dx^D
171  double precision, intent(inout) :: w(ixI^S,1:nw), dtnew, cmax_mype, a2max_mype(ndim),cs2max_mype
172 
173  integer :: idims
174  integer :: hxO^L
175  double precision :: courantmax, dxinv(1:ndim), courantmaxtot, courantmaxtots
176  double precision :: cmax(ixI^S), cmaxtot(ixI^S)
177  double precision :: a2max(ndim), cs2max, tco_local, Tmax_local
178 
179  dtnew=bigdouble
180 
181  ! local timestep dt has to be calculated in the
182  ! extended region because of the calculation from the
183  ! div fluxes in mod_finite_volume
184  if(local_timestep) then
185  hxomin^d=ixomin^d-1;
186  hxomax^d=ixomax^d;
187  else
188  hxomin^d=ixomin^d;
189  hxomax^d=ixomax^d;
190  end if
191 
192  if(need_global_a2max) then
193  call phys_get_a2max(w,x,ixi^l,ixo^l,a2max)
194  do idims=1,ndim
195  a2max_mype(idims) = max(a2max_mype(idims),a2max(idims))
196  end do
197  end if
198  if(need_global_cs2max) then
199  call phys_get_cs2max(w,x,ixi^l,ixo^l,cs2max)
200  cs2max_mype = max(cs2max_mype,cs2max)
201  end if
202 
203  if(phys_trac) then
204  call phys_get_tcutoff(ixi^l,ixo^l,w,x,tco_local,tmax_local)
205  {^ifoned tco_mype=max(tco_mype,tco_local) }
206  tmax_mype=max(tmax_mype,tmax_local)
207  end if
208 
209  ! these are also calculated in hxO because of local timestep
210  if(nwaux>0) call phys_get_auxiliary(ixi^l,hxo^l,w,x)
211 
212  select case (type_courant)
213  case (type_maxsum)
214  if(slab_uniform) then
215  ^d&dxinv(^d)=one/dx^d;
216  do idims=1,ndim
217  call phys_get_cmax(w,x,ixi^l,hxo^l,idims,cmax)
218  if(need_global_cmax) cmax_mype = max(cmax_mype,maxval(cmax(ixo^s)))
219  if(idims==1) then
220  cmaxtot(hxo^s)=cmax(hxo^s)*dxinv(idims)
221  else
222  cmaxtot(hxo^s)=cmaxtot(hxo^s)+cmax(hxo^s)*dxinv(idims)
223  end if
224  end do
225  else
226  do idims=1,ndim
227  call phys_get_cmax(w,x,ixi^l,hxo^l,idims,cmax)
228  if(need_global_cmax) cmax_mype = max(cmax_mype,maxval(cmax(ixo^s)))
229  if(idims==1) then
230  cmaxtot(hxo^s)=cmax(hxo^s)/block%ds(hxo^s,idims)
231  else
232  cmaxtot(hxo^s)=cmaxtot(hxo^s)+cmax(hxo^s)/block%ds(hxo^s,idims)
233  end if
234  end do
235  end if
236  ! courantmaxtots='max(summed c/dx)'
237  courantmaxtots=maxval(cmaxtot(ixo^s))
238  if(courantmaxtots>smalldouble) dtnew=min(dtnew,courantpar/courantmaxtots)
239  if(local_timestep) then
240  block%dt(hxo^s) = courantpar/cmaxtot(hxo^s)
241  end if
242 
243  case (type_summax)
244  !TODO this should be mod_input_output?
245  if(local_timestep) then
246  call mpistop("Type courant summax incompatible with local_timestep")
247  end if
248  courantmax=zero
249  courantmaxtot=zero
250  if(slab_uniform) then
251  ^d&dxinv(^d)=one/dx^d;
252  do idims=1,ndim
253  call phys_get_cmax(w,x,ixi^l,ixo^l,idims,cmax)
254  if(need_global_cmax) cmax_mype = max(cmax_mype,maxval(cmax(ixo^s)))
255  courantmax=max(courantmax,maxval(cmax(ixo^s)*dxinv(idims)))
256  courantmaxtot=courantmaxtot+courantmax
257  end do
258  else
259  do idims=1,ndim
260  call phys_get_cmax(w,x,ixi^l,ixo^l,idims,cmax)
261  if(need_global_cmax) cmax_mype = max(cmax_mype,maxval(cmax(ixo^s)))
262  courantmax=max(courantmax,maxval(cmax(ixo^s)/block%ds(ixo^s,idims)))
263  courantmaxtot=courantmaxtot+courantmax
264  end do
265  end if
266  ! courantmaxtot='summed max(c/dx)'
267  if (courantmaxtot>smalldouble) dtnew=min(dtnew,courantpar/courantmaxtot)
268  case (type_minimum)
269  if(local_timestep) then
270  call mpistop("Type courant not implemented for local_timestep, use maxsum")
271  endif
272  courantmax=zero
273  if(slab_uniform) then
274  ^d&dxinv(^d)=one/dx^d;
275  do idims=1,ndim
276  call phys_get_cmax(w,x,ixi^l,ixo^l,idims,cmax)
277  if(need_global_cmax) cmax_mype = max(cmax_mype,maxval(cmax(ixo^s)))
278  courantmax=max(courantmax,maxval(cmax(ixo^s)*dxinv(idims)))
279  end do
280  else
281  do idims=1,ndim
282  call phys_get_cmax(w,x,ixi^l,ixo^l,idims,cmax)
283  if(need_global_cmax) cmax_mype = max(cmax_mype,maxval(cmax(ixo^s)))
284  courantmax=max(courantmax,maxval(cmax(ixo^s)/block%ds(ixo^s,idims)))
285  end do
286  end if
287  ! courantmax='max(c/dx)'
288  if (courantmax>smalldouble) dtnew=min(dtnew,courantpar/courantmax)
289  end select
290  end subroutine getdt_courant
291  end subroutine setdt
292 end module mod_dt
subroutine getdt_courant(w, ixIL, ixOL, dtnew, dxD, x, cmax_mype, a2max_mype, cs2max_mype)
compute CFL limited dt (for variable time stepping)
Definition: mod_dt.t:164
subroutine, public mpistop(message)
Exit MPI-AMRVAC with an error message.
Definition: mod_comm_lib.t:208
Definition: mod_dt.t:1
subroutine, public setdt()
setdt - set dt for all levels between levmin and levmax. dtpar>0 --> use fixed dtpar for all level dt...
Definition: mod_dt.t:11
This module contains definitions of global parameters and variables and some generic functions/subrou...
type(state), pointer block
Block pointer for using one block and its previous state.
double precision unit_time
Physical scaling factor for time.
double precision global_time
The global simulation time.
double precision time_max
End time for the simulation.
integer it
Number of time steps taken.
integer it_init
initial iteration count
integer, parameter type_maxsum
integer switchers for type courant
integer, parameter ndim
Number of spatial dimensions for grid variables.
double precision cmax_global
global fastest wave speed needed in fd scheme and glm method
integer icomm
The MPI communicator.
integer mype
The rank of the current MPI task.
double precision dtpar
If dtpar is positive, it sets the timestep dt, otherwise courantpar is used to limit the time step ba...
integer, dimension(:), allocatable, parameter d
logical local_timestep
each cell has its own timestep or not
logical need_global_a2max
global value for schmid scheme
double precision courantpar
The Courant (CFL) number used for the simulation.
integer ixm
the mesh range of a physical block without ghost cells
integer ierrmpi
A global MPI error return code.
integer slowsteps
If > 1, then in the first slowsteps-1 time steps dt is reduced by a factor .
integer type_courant
How to compute the CFL-limited time step.
integer, parameter unitterm
Unit for standard output.
double precision, dimension(nfile) dtsave
Repeatedly save output of type N when dtsave(N) simulation time has passed.
double precision, dimension(:,:), allocatable rnode
Corner coordinates.
logical need_global_cs2max
global value for csound speed
double precision unit_temperature
Physical scaling factor for temperature.
logical final_dt_reduction
If true, allow final dt reduction for matching time_max on output.
integer, parameter type_summax
double precision, dimension(:,:), allocatable dx
logical phys_trac
Use TRAC (Johnston 2019 ApJL, 873, L22) for MHD or 1D HD.
double precision, dimension(nsavehi, nfile) tsave
Save output of type N on times tsave(:, N)
logical need_global_cmax
need global maximal wave speed
logical crash
Save a snapshot before crash a run met unphysical values.
double precision cs2max_global
global largest cs2 for hyperbolic thermal conduction
logical slab_uniform
uniform Cartesian geometry or not (stretched Cartesian)
double precision dtmin
Stop the simulation when the time step becomes smaller than this value.
integer, parameter nfile
Number of output methods.
logical final_dt_exit
Force timeloop exit when final dt < dtmin.
integer, parameter type_minimum
double precision, dimension(ndim) dxlevel
integer, dimension(nfile) isavet
double precision, dimension(ndim) a2max_global
global largest a2 for schmid scheme
This module defines the procedures of a physics module. It contains function pointers for the various...
Definition: mod_physics.t:4
procedure(sub_get_a2max), pointer phys_get_a2max
Definition: mod_physics.t:62
procedure(sub_get_dt), pointer phys_get_dt
Definition: mod_physics.t:71
procedure(sub_get_tcutoff), pointer phys_get_tcutoff
Definition: mod_physics.t:64
procedure(sub_get_cs2max), pointer phys_get_cs2max
Definition: mod_physics.t:63
procedure(sub_get_auxiliary), pointer phys_get_auxiliary
Definition: mod_physics.t:95
procedure(sub_trac_after_setdt), pointer phys_trac_after_setdt
Definition: mod_physics.t:65
procedure(sub_get_cmax), pointer phys_get_cmax
Definition: mod_physics.t:61
Generic supertimestepping method 1) in amrvac.par in sts_list set the following parameters which have...
integer, public sourcetype_sts
pure logical function, public is_sts_initialized()
logical function, public set_dt_sts_ncycles(my_dt)
This sets the explicit dt and calculates the number of cycles for each of the terms implemented with ...
integer, parameter, public sourcetype_sts_split
Module with all the methods that users can customize in AMRVAC.
procedure(get_dt), pointer usr_get_dt