28 double precision,
private :: He_abundance
31 double precision,
private :: rc_gamma
34 double precision,
private :: rc_gamma_1
37 double precision,
private :: invgam
42 integer,
intent(in) :: ixI^L, ixO^L
43 double precision,
intent(in) :: w(ixI^S,nw)
44 double precision,
intent(in) :: x(ixI^S,1:ndim)
45 double precision,
intent(out):: res(ixI^S)
52 logical :: has_equi = .false.
53 procedure(
get_subr1),
pointer,
nopass :: get_rho => null()
54 procedure(
get_subr1),
pointer,
nopass :: get_rho_equi => null()
55 procedure(
get_subr1),
pointer,
nopass :: get_pthermal => null()
56 procedure(
get_subr1),
pointer,
nopass :: get_pthermal_equi => null()
57 procedure(
get_subr1),
pointer,
nopass :: get_var_rfactor => null()
69 double precision :: cfrac
72 character(len=std_len) :: coolcurve
75 character(len=std_len) :: coolmethod
81 double precision :: tlow
88 double precision :: rad_cut_hgt
89 double precision :: rad_cut_dey
92 double precision,
allocatable :: tcool(:), lcool(:), dldtcool(:)
93 double precision,
allocatable :: yc(:), invyc(:)
94 double precision :: tref, lref, tcoolmin,tcoolmax
95 double precision :: lgtcoolmin, lgtcoolmax, lgstep
99 double precision,
allocatable :: y_ppl(:), t_ppl(:), l_ppl(:), a_ppl(:)
103 logical :: isppl = .false.
120 data t_hildner / 3.00000, 4.17609, 4.90309, 5.47712, 5.90309, 10.00000 /
122 data x_hildner / -53.30803, -29.92082, -21.09691, -7.40450, -16.25885 /
124 data a_hildner / 7.4, 1.8, 0.0, -2.5, -1.0 /
128 data t_fm / 3.00000, 4.30103, 5.60206, 7.00000, 10.00000 /
130 data x_fm / -31.15813, -27.50227, -18.25885, -35.75893 /
132 data a_fm / 2.0, 1.15, -0.5, 2.0 /
136 data t_rosner / 3.00000, 3.89063, 4.30195, 4.57500, 4.90000, &
137 5.40000, 5.77000, 6.31500, 7.60457, 10.00000 /
139 data x_rosner / -69.900, -48.307, -21.850, -31.000, -21.200, &
140 -10.400, -21.940, -17.730, -26.602 /
142 data a_rosner / 11.70, 6.15, 0.00, 2.00, 0.00, &
143 -2.00, 0.00, -0.67, 0.50 /
147 data t_klimchuk / 3.00, 4.97, 5.67, 6.18, 6.55, 6.90, 7.63, 10.00 /
149 data x_klimchuk / -30.96257, -16.05208, -21.72125, -12.45223, &
150 -24.46092, -15.26043, -26.70774 /
152 data a_klimchuk / 2.00, -1.00, 0.00, -1.50, 0.33, -1.00, 0.50 /
156 data t_spex_dm_rough / 1.000, 1.572, 3.992, 4.165, 5.221, 5.751, 7.295, 8.160 /
158 data x_spex_dm_rough / -34.286, -28.282, -108.273, -26.662, -9.729, -17.550, -24.767 /
160 data a_spex_dm_rough / 4.560, 0.740, 20.777, 1.182, -2.061, -0.701, 0.288 /
164 data t_spex_dm_fine / 1.000, 1.422, 2.806, 3.980, 4.177, 4.443, 4.832, 5.397, &
165 5.570, 5.890, 6.232, 6.505, 6.941, 7.385, 8.160 /
167 data x_spex_dm_fine / -35.314, -29.195, -26.912, -108.273, -18.971, -32.195, -21.217, &
168 -0.247, -15.415, -19.275, -9.387, -22.476, -17.437, -25.026 /
170 data a_spex_dm_fine / 5.452, 1.150, 0.337, 20.777, -0.602, 2.374, 0.102, &
171 -3.784, -1.061, -0.406, -1.992, 0.020, -0.706, 0.321 /
194 data t_jccorona / 4.00000, 4.14230, 4.21995, 4.29761, 4.37528, &
195 4.45294, 4.53061, 4.60827, 4.68593, 4.76359, &
196 4.79705, 4.83049, 4.86394, 4.89739, 4.93084, &
197 4.96428, 4.99773, 5.03117, 5.06461, 5.17574, &
198 5.28684, 5.39796, 5.50907, 5.62018, 5.73129, &
199 5.84240, 5.95351, 6.06461, 6.17574, 6.28684, &
200 6.39796, 6.50907, 6.62018, 6.73129, 6.84240, &
201 6.95351, 7.06461, 7.17574, 7.28684, 7.39796, &
202 7.50907, 7.62018, 7.73129, 7.84240, 7.95351 /
204 data l_jccorona / -200.18883, -100.78630, -30.60384, -22.68481, -21.76445, &
205 -21.67936, -21.54218, -21.37958, -21.25172, -21.17584, &
206 -21.15783, -21.14491, -21.13527, -21.12837, -21.12485, &
207 -21.12439, -21.12642, -21.12802, -21.12548, -21.08965, &
208 -21.08812, -21.19542, -21.34582, -21.34839, -21.31701, &
209 -21.29072, -21.28900, -21.34104, -21.43122, -21.62448, &
210 -21.86694, -22.02897, -22.08051, -22.06057, -22.01973, &
211 -22.00000, -22.05161, -22.22175, -22.41452, -22.52581, &
212 -22.56914, -22.57486, -22.56151, -22.53969, -22.51490 /
216 data t_dm / 2.0, 2.1, 2.2, 2.3, 2.4, &
217 2.5, 2.6, 2.7, 2.8, 2.9, &
218 3.0, 3.1, 3.2, 3.3, 3.4, &
219 3.5, 3.6, 3.7, 3.8, 3.9, &
220 4.0, 4.1, 4.2, 4.3, 4.4, &
221 4.5, 4.6, 4.7, 4.8, 4.9, &
222 5.0, 5.1, 5.2, 5.3, 5.4, &
223 5.5, 5.6, 5.7, 5.8, 5.9, &
224 6.0, 6.1, 6.2, 6.3, 6.4, &
225 6.5, 6.6, 6.7, 6.8, 6.9, &
226 7.0, 7.1, 7.2, 7.3, 7.4, &
227 7.5, 7.6, 7.7, 7.8, 7.9, &
228 8.0, 8.1, 8.2, 8.3, 8.4, &
229 8.5, 8.6, 8.7, 8.8, 8.9, &
232 data l_dm / -26.523, -26.398, -26.301, -26.222, -26.097 &
233 , -26.011, -25.936, -25.866, -25.807, -25.754 &
234 , -25.708, -25.667, -25.630, -25.595, -25.564 &
235 , -25.534, -25.506, -25.479, -25.453, -25.429 &
236 , -25.407, -23.019, -21.762, -21.742, -21.754 &
237 , -21.730, -21.523, -21.455, -21.314, -21.229 &
238 , -21.163, -21.126, -21.092, -21.060, -21.175 &
239 , -21.280, -21.390, -21.547, -21.762, -22.050 &
240 , -22.271, -22.521, -22.646, -22.660, -22.676 &
241 , -22.688, -22.690, -22.662, -22.635, -22.609 &
242 , -22.616, -22.646, -22.697, -22.740, -22.788 &
243 , -22.815, -22.785, -22.754, -22.728, -22.703 &
244 , -22.680, -22.630, -22.580, -22.530, -22.480 &
245 , -22.430, -22.380, -22.330, -22.280, -22.230 &
250 data t_mb / 4.0, 4.1, 4.2, 4.3, 4.4, &
251 4.5, 4.6, 4.7, 4.8, 4.9, &
252 5.0, 5.1, 5.2, 5.3, 5.4, &
253 5.5, 5.6, 5.7, 5.8, 5.9, &
254 6.0, 6.1, 6.2, 6.3, 6.4, &
255 6.5, 6.6, 6.7, 6.8, 6.9, &
256 7.0, 7.1, 7.2, 7.3, 7.4, &
257 7.5, 7.6, 7.7, 7.8, 7.9, &
258 8.0, 8.1, 8.2, 8.3, 8.4, &
259 8.5, 8.6, 8.7, 8.8, 8.9, &
262 data l_mb / -23.133, -22.895, -22.548, -22.285, -22.099 &
263 , -21.970, -21.918, -21.826, -21.743, -21.638 &
264 , -21.552, -21.447, -21.431, -21.418, -21.461 &
265 , -21.570, -21.743, -21.832, -21.908, -21.981 &
266 , -22.000, -21.998, -21.992, -22.013, -22.095 &
267 , -22.262, -22.397, -22.445, -22.448, -22.446 &
268 , -22.448, -22.465, -22.575, -22.725, -22.749 &
269 , -22.768, -22.753, -22.717, -22.678, -22.637 &
270 , -22.603, -22.553, -22.503, -22.453, -22.403 &
271 , -22.353, -22.303, -22.253, -22.203, -22.153 &
277 2.0, 2.1, 2.2, 2.3, 2.4, &
278 2.5, 2.6, 2.7, 2.8, 2.9, &
279 3.0, 3.1, 3.2, 3.3, 3.4, &
280 3.5, 3.6, 3.7, 3.8, 3.9, &
281 4.0, 4.1, 4.2, 4.3, 4.4, &
282 4.5, 4.6, 4.7, 4.8, 4.9, &
283 5.0, 5.1, 5.2, 5.3, 5.4, &
284 5.5, 5.6, 5.7, 5.8, 5.9, &
285 6.0, 6.1, 6.2, 6.3, 6.4, &
286 6.5, 6.6, 6.7, 6.8, 6.9, &
287 7.0, 7.1, 7.2, 7.3, 7.4, &
288 7.5, 7.6, 7.7, 7.8, 7.9, &
289 8.0, 8.1, 8.2, 8.3, 8.4, &
290 8.5, 8.6, 8.7, 8.8, 8.9, &
294 -99.000, -99.000, -99.000, -99.000, -99.000 &
295 , -99.000, -99.000, -99.000, -99.000, -99.000 &
296 , -99.000, -99.000, -99.000, -99.000, -99.000 &
297 , -99.000, -44.649, -38.362, -33.324, -29.292 &
298 , -26.063, -23.532, -22.192, -22.195, -22.454 &
299 , -22.676, -22.909, -22.925, -22.499, -22.276 &
300 , -22.440, -22.688, -22.917, -23.116, -23.274 &
301 , -23.394, -23.472, -23.516, -23.530, -23.525 &
302 , -23.506, -23.478, -23.444, -23.408, -23.368 &
303 , -23.328, -23.286, -23.244, -23.201, -23.157 &
304 , -23.114, -23.070, -23.026, -22.981, -22.937 &
305 , -22.893, -22.848, -22.803, -22.759, -22.714 &
306 , -22.669, -22.619, -22.569, -22.519, -22.469 &
307 , -22.419, -22.369, -22.319, -22.269, -22.190 &
313 2.0, 2.1, 2.2, 2.3, 2.4, &
314 2.5, 2.6, 2.7, 2.8, 2.9, &
315 3.0, 3.1, 3.2, 3.3, 3.4, &
316 3.5, 3.6, 3.7, 3.8, 3.9, &
317 4.0, 4.1, 4.2, 4.3, 4.4, &
318 4.5, 4.6, 4.7, 4.8, 4.9, &
319 5.0, 5.1, 5.2, 5.3, 5.4, &
320 5.5, 5.6, 5.7, 5.8, 5.9, &
321 6.0, 6.1, 6.2, 6.3, 6.4, &
322 6.5, 6.6, 6.7, 6.8, 6.9, &
323 7.0, 7.1, 7.2, 7.3, 7.4, &
324 7.5, 7.6, 7.7, 7.8, 7.9, &
325 8.0, 8.1, 8.2, 8.3, 8.4, &
326 8.5, 8.6, 8.7, 8.8, 8.9, &
330 -21.192, -21.160, -21.150, -21.150, -21.166 &
331 , -21.191, -21.222, -21.264, -21.308, -21.357 &
332 , -21.408, -21.449, -21.494, -21.544, -21.587 &
333 , -21.638, -21.686, -21.736, -21.780, -21.800 &
334 , -21.744, -21.547, -21.208, -20.849, -20.345 &
335 , -19.771, -19.409, -19.105, -18.827, -18.555 &
336 , -18.460, -18.763, -19.168, -19.334, -19.400 &
337 , -19.701, -20.090, -20.288, -20.337, -20.301 &
338 , -20.233, -20.275, -20.363, -20.508, -20.675 &
339 , -20.856, -21.025, -21.159, -21.256, -21.320 &
340 , -21.354, -21.366, -21.361, -21.343, -21.317 &
341 , -21.285, -21.250, -21.212, -21.172, -21.131 &
342 , -21.089, -21.039, -20.989, -20.939, -20.889 &
343 , -20.839, -20.789, -20.739, -20.689, -20.639 &
349 2.0, 2.1, 2.2, 2.3, 2.4, &
350 2.5, 2.6, 2.7, 2.8, 2.9, &
351 3.0, 3.1, 3.2, 3.3, 3.4, &
352 3.5, 3.6, 3.7, 3.8, 3.9, &
353 4.0, 4.1, 4.2, 4.3, 4.4, &
354 4.5, 4.6, 4.7, 4.8, 4.9, &
355 5.0, 5.1, 5.2, 5.3, 5.4, &
356 5.5, 5.6, 5.7, 5.8, 5.9, &
357 6.0, 6.1, 6.2, 6.3, 6.4, &
358 6.5, 6.6, 6.7, 6.8, 6.9, &
359 7.0, 7.1, 7.2, 7.3, 7.4, &
360 7.5, 7.6, 7.7, 7.8, 7.9, &
361 8.0, 8.1, 8.2, 8.3, 8.4, &
362 8.5, 8.6, 8.7, 8.8, 8.9, &
366 -26.983, -26.951, -26.941, -26.940, -26.956 &
367 , -26.980, -27.011, -27.052, -27.097, -27.145 &
368 , -27.195, -27.235, -27.279, -27.327, -27.368 &
369 , -27.415, -27.456, -27.485, -27.468, -27.223 &
370 , -25.823, -23.501, -22.162, -22.084, -22.157 &
371 , -22.101, -21.974, -21.782, -21.542, -21.335 &
372 , -21.251, -21.275, -21.236, -21.173, -21.167 &
373 , -21.407, -21.670, -21.788, -21.879, -22.008 &
374 , -22.192, -22.912, -22.918, -22.887, -22.929 &
375 , -23.023, -23.094, -23.117, -23.108, -23.083 &
376 , -23.049, -23.011, -22.970, -22.928, -22.885 &
377 , -22.842, -22.798, -22.754, -22.709, -22.665 &
378 , -22.620, -22.570, -22.520, -22.470, -22.420 &
379 , -22.370, -22.320, -22.270, -22.220, -22.170 &
385 3.80, 3.84, 3.88, 3.92, 3.96, &
386 4.00, 4.04, 4.08, 4.12, 4.16, &
387 4.20, 4.24, 4.28, 4.32, 4.36, &
388 4.40, 4.44, 4.48, 4.52, 4.56, &
389 4.60, 4.64, 4.68, 4.72, 4.76, &
390 4.80, 4.84, 4.88, 4.92, 4.96, &
391 5.00, 5.04, 5.08, 5.12, 5.16, &
392 5.20, 5.24, 5.28, 5.32, 5.36, &
393 5.40, 5.44, 5.48, 5.52, 5.56, &
394 5.60, 5.64, 5.68, 5.72, 5.76, &
395 5.80, 5.84, 5.88, 5.92, 5.96, &
396 6.00, 6.04, 6.08, 6.12, 6.16, &
397 6.20, 6.24, 6.28, 6.32, 6.36, &
398 6.40, 6.44, 6.48, 6.52, 6.56, &
399 6.60, 6.64, 6.68, 6.72, 6.76, &
400 6.80, 6.84, 6.88, 6.92, 6.96, &
401 7.00, 7.04, 7.08, 7.12, 7.16, &
402 7.20, 7.24, 7.28, 7.32, 7.36, &
403 7.40, 7.44, 7.48, 7.52, 7.56, &
404 7.60, 7.64, 7.68, 7.72, 7.76, &
405 7.80, 7.84, 7.88, 7.92, 7.96, &
406 8.00, 8.04, 8.08, 8.12, 8.16 /
409 -25.7331, -25.0383, -24.4059, -23.8288, -23.3027 &
410 , -22.8242, -22.3917, -22.0067, -21.6818, -21.4529 &
411 , -21.3246, -21.3459, -21.4305, -21.5293, -21.6138 &
412 , -21.6615, -21.6551, -21.5919, -21.5092, -21.4124 &
413 , -21.3085, -21.2047, -21.1067, -21.0194, -20.9413 &
414 , -20.8735, -20.8205, -20.7805, -20.7547, -20.7455 &
415 , -20.7565, -20.7820, -20.8008, -20.7994, -20.7847 &
416 , -20.7687, -20.7590, -20.7544, -20.7505, -20.7545 &
417 , -20.7888, -20.8832, -21.0450, -21.2286, -21.3737 &
418 , -21.4573, -21.4935, -21.5098, -21.5345, -21.5863 &
419 , -21.6548, -21.7108, -21.7424, -21.7576, -21.7696 &
420 , -21.7883, -21.8115, -21.8303, -21.8419, -21.8514 &
421 , -21.8690, -21.9057, -21.9690, -22.0554, -22.1488 &
422 , -22.2355, -22.3084, -22.3641, -22.4033, -22.4282 &
423 , -22.4408, -22.4443, -22.4411, -22.4334, -22.4242 &
424 , -22.4164, -22.4134, -22.4168, -22.4267, -22.4418 &
425 , -22.4603, -22.4830, -22.5112, -22.5449, -22.5819 &
426 , -22.6177, -22.6483, -22.6719, -22.6883, -22.6985 &
427 , -22.7032, -22.7037, -22.7008, -22.6950, -22.6869 &
428 , -22.6769, -22.6655, -22.6531, -22.6397, -22.6258 &
429 , -22.6111, -22.5964, -22.5816, -22.5668, -22.5519 &
430 , -22.5367, -22.5216, -22.5062, -22.4912, -22.4753 /
433 0.000013264, 0.000042428, 0.000088276, 0.00017967 &
434 , 0.00084362, 0.0034295, 0.013283, 0.042008 &
435 , 0.12138, 0.30481, 0.53386, 0.76622 &
436 , 0.89459, 0.95414, 0.98342 &
437 , 1.0046, 1.0291, 1.0547 &
439 , 1.0945, 1.0972, 1.0988 &
441 , 1.1102, 1.1233, 1.1433 &
443 , 1.1885, 1.1937, 1.1966 &
445 , 1.1999, 1.2004, 1.2008 &
447 , 1.2020, 1.2025, 1.2030 &
449 , 1.2039, 1.2040, 1.2041 &
451 , 1.2045, 1.2046, 1.2047 &
453 , 1.2051, 1.2053, 1.2055 &
455 , 1.2060, 1.2062, 1.2065 &
457 , 1.2072, 1.2075, 1.2077 &
459 , 1.2080, 1.2081, 1.2082 &
461 , 1.2084, 1.2084, 1.2085 &
463 , 1.2086, 1.2087, 1.2087 &
465 , 1.2089, 1.2089, 1.2089 &
467 , 1.2090, 1.2090, 1.2090 &
469 , 1.2090, 1.2090, 1.2090 &
471 , 1.2090, 1.2090, 1.2090 &
473 , 1.2090, 1.2090, 1.2090 &
481 data t_dm_2 / 1.00, 1.04, 1.08, 1.12, 1.16, 1.20 &
482 , 1.24, 1.28, 1.32, 1.36, 1.40 &
483 , 1.44, 1.48, 1.52, 1.56, 1.60 &
484 , 1.64, 1.68, 1.72, 1.76, 1.80 &
485 , 1.84, 1.88, 1.92, 1.96, 2.00 &
486 , 2.04, 2.08, 2.12, 2.16, 2.20 &
487 , 2.24, 2.28, 2.32, 2.36, 2.40 &
488 , 2.44, 2.48, 2.52, 2.56, 2.60 &
489 , 2.64, 2.68, 2.72, 2.76, 2.80 &
490 , 2.84, 2.88, 2.92, 2.96, 3.00 &
491 , 3.04, 3.08, 3.12, 3.16, 3.20 &
492 , 3.24, 3.28, 3.32, 3.36, 3.40 &
493 , 3.44, 3.48, 3.52, 3.56, 3.60 &
494 , 3.64, 3.68, 3.72, 3.76, 3.80 &
495 , 3.84, 3.88, 3.92, 3.96, 4.00 /
497 data l_dm_2 / -30.0377, -29.7062, -29.4055, -29.1331, -28.8864, -28.6631 &
498 , -28.4614, -28.2791, -28.1146, -27.9662, -27.8330 &
499 , -27.7129, -27.6052, -27.5088, -27.4225, -27.3454 &
500 , -27.2767, -27.2153, -27.1605, -27.1111, -27.0664 &
501 , -27.0251, -26.9863, -26.9488, -26.9119, -26.8742 &
502 , -26.8353, -26.7948, -26.7523, -26.7080, -26.6619 &
503 , -26.6146, -26.5666, -26.5183, -26.4702, -26.4229 &
504 , -26.3765, -26.3317, -26.2886, -26.2473, -26.2078 &
505 , -26.1704, -26.1348, -26.1012, -26.0692, -26.0389 &
506 , -26.0101, -25.9825, -25.9566, -25.9318, -25.9083 &
507 , -25.8857, -25.8645, -25.8447, -25.8259, -25.8085 &
508 , -25.7926, -25.7778, -25.7642, -25.7520, -25.7409 &
509 , -25.7310, -25.7222, -25.7142, -25.7071, -25.7005 &
510 , -25.6942, -25.6878, -25.6811, -25.6733, -25.6641 &
511 , -25.6525, -25.6325, -25.6080, -25.5367, -25.4806 /
516 1.000 , 1.050 , 1.100 , 1.150 , &
517 1.200 , 1.250 , 1.300 , 1.350 , &
518 1.400 , 1.450 , 1.500 , 1.550 , &
519 1.600 , 1.650 , 1.700 , 1.750 , &
520 1.800 , 1.850 , 1.900 , 1.950 , &
521 2.000 , 2.050 , 2.100 , 2.150 , &
522 2.200 , 2.250 , 2.300 , 2.350 , &
523 2.400 , 2.450 , 2.500 , 2.550 , &
524 2.600 , 2.650 , 2.700 , 2.750 , &
525 2.800 , 2.850 , 2.900 , 2.950 , &
526 3.000 , 3.050 , 3.100 , 3.150 , &
527 3.200 , 3.250 , 3.300 , 3.350 , &
528 3.400 , 3.450 , 3.500 , 3.550 , &
529 3.600 , 3.650 , 3.700 , 3.750 , &
530 3.800 , 3.850 , 3.900 , 3.950 , &
531 4.000 , 4.050 , 4.100 , 4.150 , &
532 4.200 , 4.250 , 4.300 , 4.350 , &
533 4.400 , 4.450 , 4.500 , 4.550 , &
534 4.600 , 4.650 , 4.700 , 4.750 , &
535 4.800 , 4.850 , 4.900 , 4.950 , &
536 5.000 , 5.050 , 5.100 , 5.150 , &
537 5.200 , 5.250 , 5.300 , 5.350 , &
538 5.400 , 5.450 , 5.500 , 5.550 , &
539 5.600 , 5.650 , 5.700 , 5.750 , &
540 5.800 , 5.850 , 5.900 , 5.950 , &
541 6.000 , 6.050 , 6.100 , 6.150 , &
542 6.200 , 6.250 , 6.300 , 6.350 , &
543 6.400 , 6.450 , 6.500 , 6.550 , &
544 6.600 , 6.650 , 6.700 , 6.750 , &
545 6.800 , 6.850 , 6.900 , 6.950 , &
546 7.000 , 7.050 , 7.100 , 7.150 , &
547 7.200 , 7.250 , 7.300 , 7.350 , &
548 7.400 , 7.450 , 7.500 , 7.550 , &
549 7.600 , 7.650 , 7.700 , 7.750 , &
550 7.800 , 7.850 , 7.900 , 7.950 , &
551 8.000 , 8.100 , 8.200 , 8.300 , &
552 8.400 , 8.500 , 8.600 , 8.700 , &
553 8.800 , 8.900 , 9.00 /
556 -28.375 , -28.251 , -28.137 , -28.029 , &
557 -27.929 , -27.834 , -27.745 , -27.662 , &
558 -27.584 , -27.512 , -27.445 , -27.383 , &
559 -27.326 , -27.273 , -27.223 , -27.175 , &
560 -27.128 , -27.079 , -27.027 , -26.972 , &
561 -26.911 , -26.846 , -26.777 , -26.705 , &
562 -26.632 , -26.554 , -26.479 , -26.407 , &
563 -26.338 , -26.274 , -26.213 , -26.156 , &
564 -26.101 , -26.049 , -25.999 , -25.949 , &
565 -25.901 , -25.852 , -25.803 , -25.754 , &
566 -25.707 , -25.662 , -25.621 , -25.588 , &
567 -25.561 , -25.538 , -25.518 , -25.497 , &
568 -25.475 , -25.452 , -25.426 , -25.400 , &
569 -25.374 , -25.333 , -25.295 , -25.261 , &
570 -25.228 , -25.189 , -25.136 , -25.053 , &
571 -24.888 , -24.454 , -23.480 , -22.562 , &
572 -22.009 , -21.826 , -21.840 , -21.905 , &
573 -21.956 , -21.971 , -21.958 , -21.928 , &
574 -21.879 , -21.810 , -21.724 , -21.623 , &
575 -21.512 , -21.404 , -21.321 , -21.273 , &
576 -21.250 , -21.253 , -21.275 , -21.287 , &
577 -21.282 , -21.275 , -21.272 , -21.267 , &
578 -21.281 , -21.357 , -21.496 , -21.616 , &
579 -21.677 , -21.698 , -21.708 , -21.730 , &
580 -21.767 , -21.793 , -21.794 , -21.787 , &
581 -21.787 , -21.802 , -21.826 , -21.859 , &
582 -21.911 , -21.987 , -22.082 , -22.173 , &
583 -22.253 , -22.325 , -22.392 , -22.448 , &
584 -22.487 , -22.512 , -22.524 , -22.528 , &
585 -22.524 , -22.516 , -22.507 , -22.501 , &
586 -22.502 , -22.511 , -22.533 , -22.565 , &
587 -22.600 , -22.630 , -22.648 , -22.656 , &
588 -22.658 , -22.654 , -22.647 , -22.634 , &
589 -22.619 , -22.602 , -22.585 , -22.566 , &
590 -22.546 , -22.525 , -22.505 , -22.480 , &
591 -22.465 , -22.415 , -22.365 , -22.315 , &
592 -22.265 , -22.215 , -22.165 , -22.115 , &
593 -22.065 , -22.015 , -21.965 /
598 1.000 , 1.050 , 1.100 , 1.150 , &
599 1.200 , 1.250 , 1.300 , 1.350 , &
600 1.400 , 1.450 , 1.500 , 1.550 , &
601 1.600 , 1.650 , 1.700 , 1.750 , &
602 1.800 , 1.850 , 1.900 , 1.950 , &
603 2.000 , 2.050 , 2.100 , 2.150 , &
604 2.200 , 2.250 , 2.300 , 2.350 , &
605 2.400 , 2.450 , 2.500 , 2.550 , &
606 2.600 , 2.650 , 2.700 , 2.750 , &
607 2.800 , 2.850 , 2.900 , 2.950 , &
608 3.000 , 3.050 , 3.100 , 3.150 , &
609 3.200 , 3.250 , 3.300 , 3.350 , &
610 3.400 , 3.450 , 3.500 , 3.550 , &
611 3.600 , 3.650 , 3.700 , 3.750 , &
612 3.800 , 3.850 , 3.900 , 3.950 , &
613 4.000 , 4.050 , 4.100 , 4.150 , &
614 4.200 , 4.250 , 4.300 , 4.350 , &
615 4.400 , 4.450 , 4.500 , 4.550 , &
616 4.600 , 4.650 , 4.700 , 4.750 , &
617 4.800 , 4.850 , 4.900 , 4.950 , &
618 5.000 , 5.050 , 5.100 , 5.150 , &
619 5.200 , 5.250 , 5.300 , 5.350 , &
620 5.400 , 5.450 , 5.500 , 5.550 , &
621 5.600 , 5.650 , 5.700 , 5.750 , &
622 5.800 , 5.850 , 5.900 , 5.950 , &
623 6.000 , 6.050 , 6.100 , 6.150 , &
624 6.200 , 6.250 , 6.300 , 6.350 , &
625 6.400 , 6.450 , 6.500 , 6.550 , &
626 6.600 , 6.650 , 6.700 , 6.750 , &
627 6.800 , 6.850 , 6.900 , 6.950 , &
628 7.000 , 7.050 , 7.100 , 7.150 , &
629 7.200 , 7.250 , 7.300 , 7.350 , &
630 7.400 , 7.450 , 7.500 , 7.550 , &
631 7.600 , 7.650 , 7.700 , 7.750 , &
632 7.800 , 7.850 , 7.900 , 7.950 , &
633 8.000 , 8.100 , 8.200 , 8.300 , &
634 8.400 , 8.500 , 8.600 , 8.700 , &
635 8.800 , 8.900 , 9.00 /
638 -28.365 , -28.242 , -28.127 , -28.020 , &
639 -27.919 , -27.825 , -27.736 , -27.653 , &
640 -27.575 , -27.504 , -27.437 , -27.376 , &
641 -27.319 , -27.267 , -27.220 , -27.176 , &
642 -27.134 , -27.095 , -27.058 , -27.021 , &
643 -26.985 , -26.948 , -26.910 , -26.870 , &
644 -26.827 , -26.775 , -26.721 , -26.664 , &
645 -26.608 , -26.552 , -26.495 , -26.437 , &
646 -26.378 , -26.317 , -26.255 , -26.190 , &
647 -26.123 , -26.053 , -25.984 , -25.913 , &
648 -25.847 , -25.786 , -25.736 , -25.702 , &
649 -25.678 , -25.662 , -25.649 , -25.636 , &
650 -25.621 , -25.604 , -25.587 , -25.571 , &
651 -25.562 , -25.526 , -25.505 , -25.499 , &
652 -25.499 , -25.491 , -25.468 , -25.410 , &
653 -25.268 , -24.888 , -23.702 , -22.624 , &
654 -22.036 , -21.843 , -21.854 , -21.924 , &
655 -21.986 , -22.017 , -22.021 , -22.005 , &
656 -21.964 , -21.896 , -21.806 , -21.699 , &
657 -21.580 , -21.463 , -21.370 , -21.312 , &
658 -21.284 , -21.290 , -21.322 , -21.345 , &
659 -21.354 , -21.366 , -21.385 , -21.396 , &
660 -21.414 , -21.483 , -21.600 , -21.696 , &
661 -21.742 , -21.759 , -21.776 , -21.816 , &
662 -21.885 , -21.939 , -21.946 , -21.918 , &
663 -21.873 , -21.818 , -21.756 , -21.689 , &
664 -21.618 , -21.547 , -21.475 , -21.403 , &
665 -21.331 , -21.260 , -21.188 , -21.114 , &
666 -21.039 , -20.963 , -20.887 , -20.810 , &
667 -20.734 , -20.657 , -20.581 , -20.505 , &
668 -20.429 , -20.352 , -20.276 , -20.200 , &
669 -20.125 , -20.049 , -19.973 , -19.898 , &
670 -19.822 , -19.747 , -19.671 , -19.596 , &
671 -19.520 , -19.445 , -19.370 , -19.295 , &
672 -19.220 , -19.144 , -19.069 , -18.994 , &
673 -18.919 , -18.869 , -18.819 , -18.769 , &
674 -18.719 , -18.669 , -18.619 , -18.569 , &
675 -18.519 , -18.469 , -18.419 /
679 data t_dere / 4.00, 4.05, 4.10, 4.15, 4.20, 4.25, 4.30, 4.35, &
680 4.40, 4.45, 4.50, 4.55, 4.60, 4.65, 4.70, 4.75, &
681 4.80, 4.85, 4.90, 4.95, 5.00, 5.05, 5.10, 5.15, &
682 5.20, 5.25, 5.30, 5.35, 5.40, 5.45, 5.50, 5.55, &
683 5.60, 5.65, 5.70, 5.75, 5.80, 5.85, 5.90, 5.95, &
684 6.00, 6.05, 6.10, 6.15, 6.20, 6.25, 6.30, 6.35, &
685 6.40, 6.45, 6.50, 6.55, 6.60, 6.65, 6.70, 6.75, &
686 6.80, 6.85, 6.90, 6.95, 7.00, 7.05, 7.10, 7.15, &
687 7.20, 7.25, 7.30, 7.35, 7.40, 7.45, 7.50, 7.55, &
688 7.60, 7.65, 7.70, 7.75, 7.80, 7.85, 7.90, 7.95, &
689 8.00, 8.05, 8.10, 8.15, 8.20, 8.25, 8.30, 8.35, &
690 8.40, 8.45, 8.50, 8.55, 8.60, 8.65, 8.70, 8.75, &
691 8.80, 8.85, 8.90, 8.95, 9.00 /
694 -23.00744648, -22.55439580, -22.15614458, -21.83268267, -21.64589156, &
695 -21.61618463, -21.68402965, -21.79048499, -21.87614836, -21.91009489, &
696 -21.89962945, -21.86012091, -21.79588002, -21.71669877, -21.62342304, &
697 -21.52143350, -21.41793664, -21.33068312, -21.27736608, -21.25181197, &
698 -21.24184538, -21.25806092, -21.27901426, -21.27164622, -21.24412514, &
699 -21.21467016, -21.19586057, -21.18309616, -21.18708664, -21.24108811, &
700 -21.35163999, -21.45099674, -21.48678240, -21.47625353, -21.45222529, &
701 -21.43297363, -21.42596873, -21.42021640, -21.41005040, -21.40120949, &
702 -21.40450378, -21.42250820, -21.44977165, -21.47755577, -21.51144928, &
703 -21.55909092, -21.63451202, -21.73754891, -21.85078089, -21.95467702, &
704 -22.03526908, -22.08990945, -22.11804503, -22.12436006, -22.11633856, &
705 -22.10072681, -22.08301995, -22.06701918, -22.05650548, -22.05551733, &
706 -22.06803389, -22.10072681, -22.15926677, -22.24033216, -22.32882716, &
707 -22.40782324, -22.47108330, -22.51855737, -22.54975089, -22.57024772, &
708 -22.58004425, -22.58335949, -22.58169871, -22.57511836, -22.56543110, &
709 -22.55439580, -22.54060751, -22.52724355, -22.51427857, -22.49894074, &
710 -22.48545225, -22.47108330, -22.45593196, -22.44009337, -22.42365865, &
711 -22.40671393, -22.38933984, -22.37059040, -22.35163999, -22.33161408, &
712 -22.31158018, -22.29073004, -22.26921772, -22.24795155, -22.22621356, &
713 -22.20411998, -22.18111459, -22.15864053, -22.13608262, -22.11294562, &
717 -23.25649024, -22.74232143, -22.28988263, -21.93554201, -21.74232143, &
718 -21.72353820, -21.80410035, -21.91009489, -22.00000000, -22.04143612, &
719 -22.04575749, -22.02502801, -21.97469413, -21.89962945, -21.80410035, &
720 -21.69250396, -21.57511836, -21.46852108, -21.38827669, -21.33629907, &
721 -21.31069114, -21.31966449, -21.33724217, -21.32882716, -21.30189945, &
722 -21.27408837, -21.25649024, -21.24718357, -21.25649024, -21.32148162, &
723 -21.46092390, -21.61083392, -21.70774393, -21.74958000, -21.76955108, &
724 -21.79588002, -21.84466396, -21.88941029, -21.91009489, -21.91721463, &
725 -21.92811799, -21.94692156, -21.96657624, -21.99139983, -22.01412464, &
726 -22.04963515, -22.10402527, -22.17848647, -22.26201267, -22.34390180, &
727 -22.41680123, -22.47237010, -22.50723961, -22.52578374, -22.53313238, &
728 -22.53165267, -22.52578374, -22.51855737, -22.51286162, -22.51286162, &
729 -22.52143350, -22.54211810, -22.57839607, -22.62708800, -22.67366414, &
730 -22.70996539, -22.73282827, -22.74714697, -22.75202673, -22.74958000, &
731 -22.74232143, -22.73282827, -22.72124640, -22.70553377, -22.69036983, &
732 -22.67162040, -22.65364703, -22.63638802, -22.61618463, -22.59687948, &
733 -22.57675413, -22.55752023, -22.53610701, -22.51570016, -22.49485002, &
734 -22.47366072, -22.45222529, -22.42945706, -22.40782324, -22.38510278, &
735 -22.36251027, -22.33913452, -22.31605287, -22.29242982, -22.26921772, &
736 -22.24565166, -22.22184875, -22.19859629, -22.17457388, -22.15058059, &
741 data t_colgan / 4.06460772, 4.14229559, 4.21995109, 4.29760733, 4.37527944, 4.45293587, &
742 4.53060946, 4.60826923, 4.68592974, 4.76359269, 4.79704583, 4.83049243, &
743 4.86394114, 4.89738514, 4.93083701, 4.96428321, 4.99773141, 5.03116600, &
744 5.06460772, 5.17574368, 5.28683805, 5.39795738, 5.50906805, 5.62017771, &
745 5.73129054, 5.84240328, 5.95351325, 6.06460772, 6.17574368, 6.28683805, &
746 6.39795738, 6.50906805, 6.62017771, 6.73129054, 6.84240328, 6.95351325, &
747 7.06460772, 7.17574368, 7.28683805, 7.39795738, 7.50906805, 7.62017771, &
748 7.73129054, 7.84240328, 7.95351325, 8.06460772, 8.17574368, 8.28683805, &
749 8.39795738, 8.50906805, 8.62017771, 8.73129054, 8.84240328, 8.95351325, &
752 data l_colgan / -22.18883401, -21.78629635, -21.60383554, -21.68480662, -21.76444630, &
753 -21.67935529, -21.54217864, -21.37958284, -21.25171892, -21.17584161, &
754 -21.15783402, -21.14491111, -21.13526945, -21.12837453, -21.12485189, &
755 -21.12438898, -21.12641785, -21.12802448, -21.12547760, -21.08964778, &
756 -21.08812360, -21.19542445, -21.34582346, -21.34839251, -21.31700703, &
757 -21.29072156, -21.28900309, -21.34104468, -21.43122351, -21.62448270, &
758 -21.86694036, -22.02897478, -22.08050874, -22.06057061, -22.01973295, &
759 -22.00000434, -22.05161149, -22.22175466, -22.41451671, -22.52581288, &
760 -22.56913516, -22.57485721, -22.56150512, -22.53968863, -22.51490350, &
761 -22.48895932, -22.46071057, -22.42908363, -22.39358639, -22.35456791, &
762 -22.31261375, -22.26827428, -22.22203698, -22.17422996, -22.12514145 /
769 double precision,
intent(in) :: phys_gamma,He_abund
772 he_abundance=he_abund
778 subroutine read_params(fl)
783 end subroutine read_params
788 double precision,
dimension(:),
allocatable :: t_table
789 double precision,
dimension(:),
allocatable :: L_table
790 double precision :: ratt, fact1, fact2, fact3, dL1, dL2
791 double precision :: tstep, Lstep
792 integer :: ntable, i, j
794 Character(len=65) :: PPL_curves(1:6)
797 fl%coolcurve=
'JCcorona'
798 fl%coolmethod=
'exact'
804 fl%rad_cut_dey=0.15d0
810 ppl_curves = [
Character(len=65) ::
'Hildner',
'FM',
'Rosner',
'Klimchuk',
'SPEX_DM_rough',
'SPEX_DM_fine']
811 do i=1,
size(ppl_curves)
812 if (ppl_curves(i)==fl%coolcurve)
then
820 select case(fl%coolcurve)
824 print *,
'Use Hildner (1974) piecewise power law'
826 allocate(fl%t_PPL(1:fl%n_PPL+1), fl%l_PPL(1:fl%n_PPL+1))
827 allocate(fl%a_PPL(1:fl%n_PPL))
830 fl%l_PPL(1:fl%n_PPL) = 10.d0**
x_hildner(1:
n_hildner) * (10.d0**fl%t_PPL(1:fl%n_PPL))**fl%a_PPL(1:fl%n_PPL)
834 print *,
'Use Forbes and Malherbe (1991)-like piecewise power law'
836 allocate(fl%t_PPL(1:fl%n_PPL+1), fl%l_PPL(1:fl%n_PPL+1))
837 allocate(fl%a_PPL(1:fl%n_PPL))
838 fl%t_PPL(1:fl%n_PPL+1) =
t_fm(1:
n_fm+1)
840 fl%l_PPL(1:fl%n_PPL) = 10.d0**
x_fm(1:
n_fm) * (10.d0**fl%t_PPL(1:fl%n_PPL))**fl%a_PPL(1:fl%n_PPL)
844 print *,
'Use piecewise power law according to Rosner (1978)'
846 print *,
'and extended by Priest (1982) from Van Der Linden (1991)'
848 allocate(fl%t_PPL(1:fl%n_PPL+1), fl%l_PPL(1:fl%n_PPL+1))
849 allocate(fl%a_PPL(1:fl%n_PPL))
852 fl%l_PPL(1:fl%n_PPL) = 10.d0**
x_rosner(1:
n_rosner) * (10.d0**fl%t_PPL(1:fl%n_PPL))**fl%a_PPL(1:fl%n_PPL)
856 print *,
'Use Klimchuk (2008) piecewise power law'
858 allocate(fl%t_PPL(1:fl%n_PPL+1), fl%l_PPL(1:fl%n_PPL+1))
859 allocate(fl%a_PPL(1:fl%n_PPL))
862 fl%l_PPL(1:fl%n_PPL) = 10.d0**
x_klimchuk(1:
n_klimchuk) * (10.d0**fl%t_PPL(1:fl%n_PPL))**fl%a_PPL(1:fl%n_PPL)
864 case(
'SPEX_DM_rough')
866 print *,
'Use the rough piece wise power law fit to the SPEX_DM curve (2009)'
868 allocate(fl%t_PPL(1:fl%n_PPL+1), fl%l_PPL(1:fl%n_PPL+1))
869 allocate(fl%a_PPL(1:fl%n_PPL))
876 print *,
'Use the fine, detailed piece wise power law fit to the SPEX_DM curve (2009)'
878 allocate(fl%t_PPL(1:fl%n_PPL+1), fl%l_PPL(1:fl%n_PPL+1))
879 allocate(fl%a_PPL(1:fl%n_PPL))
885 call mpistop(
"This piecewise power law is unknown")
889 fl%t_PPL(1:fl%n_PPL+1) = 10.d0**fl%t_PPL(1:fl%n_PPL+1)
891 if (
si_unit) fl%l_PPL(1:fl%n_PPL) = fl%l_PPL(1:fl%n_PPL) * 10.0d0**(-13)
898 fl%l_PPL(fl%n_PPL+1) = fl%l_PPL(fl%n_PPL) * ( fl%t_PPL(fl%n_PPL+1) / fl%t_PPL(fl%n_PPL) )**fl%a_PPL(fl%n_PPL)
899 fl%lref = fl%l_PPL(fl%n_PPL+1)
900 fl%tref = fl%t_PPL(fl%n_PPL+1)
903 fl%tcoolmin = fl%t_PPL(1)
904 fl%tcoolmax = fl%t_PPL(fl%n_PPL+1)
906 if (fl%tlow==bigdouble) fl%tlow=fl%tcoolmin
913 allocate(fl%tcool(1:fl%ncool), fl%Lcool(1:fl%ncool), fl%dLdtcool(1:fl%ncool))
914 allocate(fl%Yc(1:fl%ncool), fl%invYc(1:fl%ncool))
916 fl%tcool(1:fl%ncool) = zero
917 fl%Lcool(1:fl%ncool) = zero
918 fl%dLdtcool(1:fl%ncool) = zero
921 select case(fl%coolcurve)
925 print *,
'Use Colgan & Feldman (2008) cooling curve'
927 print *,
'This version only till 10000 K, beware for floor T treatment'
929 allocate(t_table(1:ntable))
930 allocate(l_table(1:ntable))
936 print *,
'Use Dalgarno & McCray (1972) cooling curve'
938 allocate(t_table(1:ntable))
939 allocate(l_table(1:ntable))
945 write(*,
'(3a)')
'Use MacDonald & Bailey (1981) cooling curve '&
946 ,
'as implemented in ZEUS-3D, with the values '&
947 ,
'from Dalgarno & McCRay (1972) for low temperatures.'
949 allocate(t_table(1:ntable))
950 allocate(l_table(1:ntable))
951 t_table(1:ntable) =
t_dm(1:21)
952 l_table(1:ntable) =
l_dm(1:21)
958 print *,
'Use Mellema & Lundqvist (2002) cooling curve '&
959 ,
'for zero metallicity '
961 allocate(t_table(1:ntable))
962 allocate(l_table(1:ntable))
968 print *,
'Use Mellema & Lundqvist (2002) cooling curve '&
969 ,
'for WC-star metallicity '
971 allocate(t_table(1:ntable))
972 allocate(l_table(1:ntable))
978 print *,
'Use Mellema & Lundqvist (2002) cooling curve '&
979 ,
'for solar metallicity '
981 allocate(t_table(1:ntable))
982 allocate(l_table(1:ntable))
988 print *,
'Use Cloudy based cooling curve '&
989 ,
'for ism metallicity '
991 allocate(t_table(1:ntable))
992 allocate(l_table(1:ntable))
998 print *,
'Use Cloudy based cooling curve '&
999 ,
'for solar metallicity '
1001 allocate(t_table(1:ntable))
1002 allocate(l_table(1:ntable))
1008 print *,
'Use SPEX cooling curve (Schure et al. 2009) '&
1009 ,
'for solar metallicity '
1011 allocate(t_table(1:ntable))
1012 allocate(l_table(1:ntable))
1018 print *,
'Use SPEX cooling curve for solar metallicity above 10^4 K. '
1019 print *,
'At lower temperatures,use Dalgarno & McCray (1972), '
1020 print *,
'with a pre-set ionization fraction of 10^-3. '
1021 print *,
'as described by Schure et al. (2009). '
1024 allocate(t_table(1:ntable))
1025 allocate(l_table(1:ntable))
1033 print *,
'Use Dere (2009) cooling curve for solar corona'
1035 allocate(t_table(1:ntable))
1036 allocate(l_table(1:ntable))
1040 case(
'Dere_corona_DM')
1042 print *,
'Combination of Dere_corona (2009) for high temperatures and'
1044 print *,
'Dalgarno & McCray (1972), DM2, for low temperatures'
1046 allocate(t_table(1:ntable))
1047 allocate(l_table(1:ntable))
1055 print *,
'Use Dere (2009) cooling curve for solar photophere'
1057 allocate(t_table(1:ntable))
1058 allocate(l_table(1:ntable))
1062 case(
'Dere_photo_DM')
1064 print *,
'Combination of Dere_photo (2009) for high temperatures and'
1066 print *,
'Dalgarno & McCray (1972), DM2, for low temperatures'
1068 allocate(t_table(1:ntable))
1069 allocate(l_table(1:ntable))
1077 print *,
'Use Colgan (2008) cooling curve'
1079 allocate(t_table(1:ntable))
1080 allocate(l_table(1:ntable))
1086 print *,
'Combination of Colgan (2008) for high temperatures and'
1088 print *,
'Dalgarno & McCray (1972), DM2, for low temperatures'
1090 allocate(t_table(1:ntable))
1091 allocate(l_table(1:ntable))
1098 call mpistop(
"This coolingcurve is unknown")
1102 fl%tcoolmax = t_table(ntable)
1103 fl%tcoolmin = t_table(1)
1104 ratt = (fl%tcoolmax-fl%tcoolmin)/( dble(fl%ncool-1) + smalldouble)
1106 fl%tcool(1) = fl%tcoolmin
1107 fl%Lcool(1) = l_table(1)
1109 fl%tcool(fl%ncool) = fl%tcoolmax
1110 fl%Lcool(fl%ncool) = l_table(ntable)
1113 fl%tcool(i) = fl%tcool(i-1)+ratt
1117 if(fl%tcool(i) < t_table(j+1))
then
1118 if(j.eq. ntable-1 )
then
1119 fact1 = (fl%tcool(i)-t_table(j+1)) &
1120 /(t_table(j)-t_table(j+1))
1121 fact2 = (fl%tcool(i)-t_table(j)) &
1122 /(t_table(j+1)-t_table(j))
1123 fl%Lcool(i) = l_table(j)*fact1 + l_table(j+1)*fact2
1126 dl1 = l_table(j+1)-l_table(j)
1127 dl2 = l_table(j+2)-l_table(j+1)
1128 jump =(max(dabs(dl1),dabs(dl2)) > 2*min(dabs(dl1),dabs(dl2)))
1131 fact1 = (fl%tcool(i)-t_table(j+1)) &
1132 /(t_table(j)-t_table(j+1))
1133 fact2 = (fl%tcool(i)-t_table(j)) &
1134 /(t_table(j+1)-t_table(j))
1135 fl%Lcool(i) = l_table(j)*fact1 + l_table(j+1)*fact2
1138 fact1 = ((fl%tcool(i)-t_table(j+1)) &
1139 * (fl%tcool(i)-t_table(j+2))) &
1140 / ((t_table(j)-t_table(j+1)) &
1141 * (t_table(j)-t_table(j+2)))
1142 fact2 = ((fl%tcool(i)-t_table(j)) &
1143 * (fl%tcool(i)-t_table(j+2))) &
1144 / ((t_table(j+1)-t_table(j)) &
1145 * (t_table(j+1)-t_table(j+2)))
1146 fact3 = ((fl%tcool(i)-t_table(j)) &
1147 * (fl%tcool(i)-t_table(j+1))) &
1148 / ((t_table(j+2)-t_table(j)) &
1149 * (t_table(j+2)-t_table(j+1)))
1150 fl%Lcool(i) = l_table(j)*fact1 + l_table(j+1)*fact2 &
1151 + l_table(j+2)*fact3
1159 fl%tcool(1:fl%ncool) = 10.0d0**fl%tcool(1:fl%ncool)
1160 fl%Lcool(1:fl%ncool) = 10.0d0**fl%Lcool(1:fl%ncool)
1163 if (
si_unit) fl%Lcool(1:fl%ncool) = fl%Lcool(1:fl%ncool) * 10.0d0**(-13)
1169 fl%tcoolmin = fl%tcool(1)+smalldouble
1171 if (fl%tlow==bigdouble) fl%tlow=fl%tcoolmin
1172 fl%tcoolmax = fl%tcool(fl%ncool)
1173 fl%lgtcoolmin = dlog10(fl%tcoolmin)
1174 fl%lgtcoolmax = dlog10(fl%tcoolmax)
1175 fl%lgstep = (fl%lgtcoolmax-fl%lgtcoolmin) * 1.d0 / (fl%ncool-1)
1176 fl%dLdtcool(1) = (fl%Lcool(2)-fl%Lcool(1))/(fl%tcool(2)-fl%tcool(1))
1177 fl%dLdtcool(fl%ncool) = (fl%Lcool(fl%ncool)-fl%Lcool(fl%ncool-1))/(fl%tcool(fl%ncool)-fl%tcool(fl%ncool-1))
1180 fl%dLdtcool(i) = (fl%Lcool(i+1)-fl%Lcool(i-1))/(fl%tcool(i+1)-fl%tcool(i-1))
1186 if( fl%coolmethod ==
'exact' )
then
1187 fl%tref = fl%tcoolmax
1188 fl%lref = fl%Lcool(fl%ncool)
1189 fl%Yc(fl%ncool) = zero
1190 do i=fl%ncool-1, 1, -1
1191 fl%Yc(i) = fl%Yc(i+1)
1193 tstep = 1.0
d-2*(fl%tcool(i+1)-fl%tcool(i))
1194 call findl(fl%tcool(i+1)-j*tstep, lstep, fl)
1195 fl%Yc(i) = fl%Yc(i) + fl%lref/fl%tref*tstep/lstep
1201 rc_gamma_1=rc_gamma-1.d0
1202 invgam = 1.d0/rc_gamma_1
1213 double precision :: y_extra, factor
1215 allocate(fl%y_PPL(1:fl%n_PPL+1))
1217 fl%y_PPL(1:fl%n_PPL+1) = zero
1219 do i=fl%n_PPL, 1, -1
1220 factor = fl%l_PPL(fl%n_PPL+1) * fl%t_PPL(i) / (fl%l_PPL(i) * fl%t_PPL(fl%n_PPL+1))
1221 if (fl%a_PPL(i) == 1.d0)
then
1222 y_extra = log( fl%t_PPL(i) / fl%t_PPL(i+1) )
1224 y_extra = 1 / (1 - fl%a_PPL(i)) * (1 - ( fl%t_PPL(i) / fl%t_PPL(i+1) )**(fl%a_PPL(i)-1) )
1226 fl%y_PPL(i) = fl%y_PPL(i+1) - factor*y_extra
1233 integer,
intent(in) :: ixI^L, ixO^L
1234 double precision,
intent(in) :: dx^D, x(ixI^S,1:ndim), w(ixI^S,1:nw)
1236 double precision,
intent(inout) :: dtnew
1238 double precision :: etherm(ixI^S), rho(ixI^S), Rfactor(ixI^S)
1239 double precision :: L1,Te(ixI^S), pth(ixI^S), lum(ixI^S)
1244 if(fl%coolmethod ==
'explicit1')
then
1245 call fl%get_pthermal(w,x,ixi^l,ixo^l,pth)
1246 call fl%get_rho(w,x,ixi^l,ixo^l,rho)
1247 call fl%get_var_Rfactor(w,x,ixi^l,ixo^l,rfactor)
1248 te(ixo^s)=pth(ixo^s)/(rho(ixo^s)*rfactor(ixo^s))
1249 {
do ix^db = ixo^lim^db\}
1255 if( te(ix^d)<=fl%tcoolmin )
then
1257 else if( te(ix^d)>=fl%tcoolmax )
then
1259 l1 = l1*rho(ix^d)**2
1261 call findl(te(ix^d),l1,fl)
1262 l1 = l1*rho(ix^d)**2
1266 etherm(ixo^s)=pth(ixo^s)*invgam
1267 dtnew =fl%cfrac*minval(etherm(ixo^s)/max(lum(ixo^s),smalldouble))
1278 integer,
intent(in) :: ixI^L,ixO^L
1279 double precision,
intent(in) :: x(ixI^S,1:ndim)
1280 double precision :: w(ixI^S,1:nw)
1281 double precision,
intent(out):: coolrate(ixI^S)
1284 double precision :: pth(ixI^S),rho(ixI^S)
1285 double precision :: L1,Te(ixI^S),Rfactor(ixI^S)
1288 call fl%get_pthermal(w,x,ixi^l,ixo^l,pth)
1289 call fl%get_rho(w,x,ixi^l,ixo^l,rho)
1290 call fl%get_var_Rfactor(w,x,ixi^l,ixo^l,rfactor)
1291 te(ixo^s) = pth(ixo^s) / (rho(ixo^s)*rfactor(ixo^s))
1293 {
do ix^db = ixo^lim^db\}
1295 if(te(ix^d) <= fl%tcoolmin)
then
1297 else if(te(ix^d) >= fl%tcoolmax)
then
1299 l1 = l1*rho(ix^d)**2
1301 call findl(te(ix^d),l1,fl)
1302 l1 = l1*rho(ix^d)**2
1304 if(
slab_uniform .and. fl%rad_cut .and. x(ix^d,ndim) .le. fl%rad_cut_hgt)
then
1305 l1 = l1*exp(-(x(ix^d,ndim)-fl%rad_cut_hgt)**2/fl%rad_cut_dey**2)
1318 integer,
intent(in) :: ixI^L, ixO^L
1319 double precision,
intent(in) :: qdt, x(ixI^S, 1:ndim), wCT(ixI^S, 1:nw)
1320 double precision :: w(ixI^S, 1:nw)
1321 double precision,
intent(out) :: coolrate(ixI^S)
1323 double precision :: y1, y2, l1, tlocal2
1324 double precision :: Te(ixI^S), pnew(ixI^S), rho(ixI^S), rhonew(ixI^S)
1325 double precision :: emin, Lmax, fact, Rfactor(ixI^S), pth(ixI^S)
1329 if( fl%coolmethod /=
'exact')
then
1330 call mpistop(
"Subroutine getvar_cooling_exact needs the exact cooling method")
1333 call fl%get_pthermal(wct, x, ixi^l, ixo^l, pth)
1334 call fl%get_rho(wct, x, ixi^l, ixo^l, rho)
1335 call fl%get_var_Rfactor(wct,x,ixi^l,ixo^l,rfactor)
1336 te(ixo^s)=pth(ixo^s)/(rho(ixo^s)*rfactor(ixo^s))
1338 call fl%get_pthermal(w, x, ixi^l, ixo^l, pnew)
1339 call fl%get_rho(w, x, ixi^l, ixo^l, rhonew)
1341 fact=fl%lref*qdt/fl%tref
1343 {
do ix^db = ixo^lim^db\}
1344 emin = rhonew(ix^d) * fl%tlow * rfactor(ix^d) * invgam
1345 lmax = max(zero, ( pnew(ix^d)*invgam - emin ) / qdt)
1349 if( te(ix^d)<= fl%tcoolmin)
then
1351 else if( te(ix^d)>= fl%tcoolmax )
then
1353 l1 = l1 * rho(ix^d)**2
1356 call findy(te(ix^d), y1, fl)
1357 y2 = y1 + fact * rho(ix^d)*rc_gamma_1
1358 call findt(tlocal2, y2, fl)
1359 if( tlocal2 <= fl%tcoolmin )
then
1362 l1 = (te(ix^d)- tlocal2)*rho(ix^d)*rfactor(ix^d)*invgam/qdt
1366 if(
slab_uniform .and. fl%rad_cut .and. x(ix^d,ndim) .le. fl%rad_cut_hgt)
then
1367 l1 = l1*exp(-(x(ix^d,ndim)-fl%rad_cut_hgt)**2/fl%rad_cut_dey**2)
1374 qsourcesplit,active,fl)
1377 integer,
intent(in) :: ixI^L, ixO^L
1378 double precision,
intent(in) :: qdt, x(ixI^S,1:ndim), wCT(ixI^S,1:nw), wCTprim(ixI^S,1:nw)
1379 double precision,
intent(inout) :: w(ixI^S,1:nw)
1380 logical,
intent(in) :: qsourcesplit
1381 logical,
intent(inout) :: active
1383 double precision,
allocatable,
dimension(:^D&) :: Lequi
1385 if(qsourcesplit .eqv.fl%rc_split)
then
1387 select case(fl%coolmethod)
1391 write(*,*)
'Fully explicit cooling is not completely safe in this version'
1392 write(*,*)
'PROCEED WITH CAUTION!'
1398 case (
'semiimplicit')
1403 call cool_exact(qdt,ixi^l,ixo^l,wct,wctprim,w,x,fl)
1405 call mpistop(
"This cooling method is unknown")
1407 if(fl%has_equi)
then
1408 allocate(lequi(ixi^s))
1410 w(ixo^s,fl%e_) = w(ixo^s,fl%e_)+lequi(ixo^s)
1420 integer,
intent(in) :: ixI^L, ixO^L
1421 double precision,
intent(in) :: qdt, x(ixI^S,1:ndim), wCT(ixI^S,1:nw)
1422 double precision,
intent(inout) :: w(ixI^S,1:nw)
1424 double precision :: etherm(ixI^S), rho(ixI^S), Rfactor(ixI^S),emin
1427 call fl%get_pthermal(w,x,ixi^l,ixo^l,etherm)
1428 call fl%get_rho(w,x,ixi^l,ixo^l,rho)
1429 call fl%get_var_Rfactor(wct,x,ixi^l,ixo^l,rfactor)
1430 {
do ix^db = ixo^lim^db\}
1431 emin = rho(ix^d)*fl%tlow*rfactor(ix^d)
1432 if(etherm(ix^d) < emin)
then
1433 w(ix^d,fl%e_)=w(ix^d,fl%e_)+(emin-etherm(ix^d))*invgam
1443 integer,
intent(in) :: ixI^L, ixO^L
1444 double precision,
intent(in) :: qdt, x(ixI^S,1:ndim), wCT(ixI^S,1:nw)
1445 double precision,
intent(inout) :: w(ixI^S,1:nw)
1447 double precision,
intent(out) :: res(ixI^S)
1449 double precision :: pth(ixI^S),rho(ixI^S),Rfactor(ixI^S),L1,Tlocal2
1450 double precision :: Te(ixI^S)
1451 double precision :: emin, Lmax
1452 double precision :: Y1, Y2
1453 double precision :: de, emax,fact
1456 call fl%get_pthermal_equi(wct,x,ixi^l,ixo^l,pth)
1457 call fl%get_rho_equi(wct,x,ixi^l,ixo^l,rho)
1458 call fl%get_var_Rfactor(wct,x,ixi^l,ixo^l,rfactor)
1459 te(ixo^s)=pth(ixo^s)/(rho(ixo^s)*rfactor(ixo^s))
1463 if(fl%coolmethod ==
'exact')
then
1465 fact = fl%lref*qdt/fl%tref
1466 {
do ix^db = ixo^lim^db\}
1467 emin = rho(ix^d)*fl%tlow*rfactor(ix^d)*invgam
1468 lmax = max(zero,(pth(ix^d)*invgam-emin)/qdt)
1469 emax = max(zero, pth(ix^d)*invgam-emin)
1475 if( te(ix^d)<=fl%tcoolmin )
then
1477 else if( te(ix^d)>=fl%tcoolmax )
then
1479 l1 = l1*rho(ix^d)**2
1481 if(te(ix^d)<
block%wextra(ix^d,fl%Tcoff_))
then
1482 l1=l1*sqrt((te(ix^d)/
block%wextra(ix^d,fl%Tcoff_))**5)
1488 call findy(te(ix^d),y1,fl)
1489 y2 = y1 + fact * rho(ix^d)*rc_gamma_1
1490 call findt(tlocal2,y2,fl)
1491 if(tlocal2<=fl%tcoolmin)
then
1494 de = (te(ix^d)-tlocal2)*rho(ix^d)*rfactor(ix^d)*invgam
1497 if(te(ix^d)<
block%wextra(ix^d,fl%Tcoff_))
then
1498 de=de*sqrt((te(ix^d)/
block%wextra(ix^d,fl%Tcoff_))**5)
1506 {
do ix^db = ixo^lim^db\}
1507 emin = rho(ix^d)*fl%tlow*rfactor(ix^d)*invgam
1508 lmax = max(zero,pth(ix^d)*invgam-emin)/qdt
1514 if( te(ix^d)<=fl%tcoolmin )
then
1516 else if( te(ix^d)>=fl%tcoolmax )
then
1519 call findl(te(ix^d),l1,fl)
1521 l1 = l1*rho(ix^d)**2
1523 if(te(ix^d)<block%wextra(ix^d,fl%Tcoff_))
then
1524 l1=l1*sqrt((te(ix^d)/block%wextra(ix^d,fl%Tcoff_))**5)
1538 integer,
intent(in) :: ixI^L, ixO^L
1539 double precision,
intent(in) :: qdt, x(ixI^S,1:ndim), wCT(ixI^S,1:nw)
1540 double precision,
intent(inout) :: w(ixI^S,1:nw)
1543 double precision :: L1,pth(ixI^S),pnew(ixI^S),rho(ixI^S),Rfactor(ixI^S)
1544 double precision :: Te(ixI^S)
1545 double precision :: emin, Lmax
1548 call fl%get_pthermal(wct,x,ixi^l,ixo^l,pth)
1549 call fl%get_pthermal(w,x,ixi^l,ixo^l,pnew)
1550 call fl%get_rho(wct,x,ixi^l,ixo^l,rho)
1551 call fl%get_var_Rfactor(wct,x,ixi^l,ixo^l,rfactor)
1552 te(ixo^s)=pth(ixo^s)/(rho(ixo^s)*rfactor(ixo^s))
1554 {
do ix^db = ixo^lim^db\}
1555 emin = rho(ix^d)*fl%tlow*rfactor(ix^d)*invgam
1556 lmax = max(zero,pnew(ix^d)*invgam-emin)/qdt
1562 if( te(ix^d)<=fl%tcoolmin )
then
1564 else if( te(ix^d)>=fl%tcoolmax )
then
1566 l1 = l1*rho(ix^d)**2
1568 if(te(ix^d)<
block%wextra(ix^d,fl%Tcoff_))
then
1569 l1=l1*sqrt((te(ix^d)/
block%wextra(ix^d,fl%Tcoff_))**5)
1574 call findl(te(ix^d),l1,fl)
1575 l1 = l1*rho(ix^d)**2
1577 if(te(ix^d)<
block%wextra(ix^d,fl%Tcoff_))
then
1578 l1=l1*sqrt((te(ix^d)/
block%wextra(ix^d,fl%Tcoff_))**5)
1583 if(
slab_uniform .and. fl%rad_cut .and. x(ix^d,ndim) .le. fl%rad_cut_hgt)
then
1584 l1 = l1*exp(-(x(ix^d,ndim)-fl%rad_cut_hgt)**2/fl%rad_cut_dey**2)
1586 w(ix^d,fl%e_) = w(ix^d,fl%e_)-l1*qdt
1597 integer,
intent(in) :: ixI^L, ixO^L
1598 double precision,
intent(in) :: qdt, x(ixI^S,1:ndim), wCT(ixI^S,1:nw)
1599 double precision,
intent(inout) :: w(ixI^S,1:nw)
1601 double precision :: Ltest, etherm, de
1602 double precision :: dtmax, dtstep
1603 double precision :: L1,pth(ixI^S),pnew(ixI^S),rho(ixI^S),Rfactor(ixI^S)
1604 double precision :: Tlocal1,plocal,Te(ixI^S)
1605 double precision :: emin, Lmax
1606 integer :: idt,ndtstep
1609 call fl%get_pthermal(wct,x,ixi^l,ixo^l,pth)
1610 call fl%get_pthermal(w,x,ixi^l,ixo^l,pnew)
1611 call fl%get_rho(wct,x,ixi^l,ixo^l,rho)
1612 call fl%get_var_Rfactor(wct,x,ixi^l,ixo^l,rfactor)
1613 te(ixo^s)=pth(ixo^s)/(rho(ixo^s)*rfactor(ixo^s))
1615 {
do ix^db = ixo^lim^db\}
1618 etherm = pth(ix^d)*invgam
1619 emin = rho(ix^d)*fl%tlow*rfactor(ix^d)*invgam
1620 lmax = max(zero,pnew(ix^d)*invgam-emin)/qdt
1626 if( te(ix^d)<=fl%tcoolmin )
then
1628 else if( te(ix^d)>=fl%tcoolmax )
then
1630 ltest = l1*rho(ix^d)**2
1632 if(te(ix^d)<
block%wextra(ix^d,fl%Tcoff_))
then
1633 ltest=ltest*sqrt((te(ix^d)/
block%wextra(ix^d,fl%Tcoff_))**5)
1636 ltest = min(l1,lmax)
1637 if( dtmax>fl%cfrac*etherm/ltest) dtmax = fl%cfrac*etherm/ltest
1639 call findl(te(ix^d),ltest,fl)
1640 ltest = ltest*rho(ix^d)**2
1642 if(te(ix^d)<
block%wextra(ix^d,fl%Tcoff_))
then
1643 ltest=ltest*sqrt((te(ix^d)/
block%wextra(ix^d,fl%Tcoff_))**5)
1646 ltest = min(ltest,lmax)
1647 if( dtmax>fl%cfrac*etherm/ltest) dtmax = fl%cfrac*etherm/ltest
1650 ndtstep = max(nint(qdt/dtmax),1)+1
1651 dtstep = qdt/ndtstep
1654 etherm = etherm - de
1657 plocal = etherm*rc_gamma_1
1658 lmax = max(zero,etherm-emin)/dtstep
1660 tlocal1 = plocal/(rho(ix^d)*rfactor(ix^d))
1661 if( tlocal1<=fl%tcoolmin )
then
1664 else if( tlocal1>=fl%tcoolmax )
then
1666 l1 = l1*rho(ix^d)**2
1668 if(tlocal1<
block%wextra(ix^d,fl%Tcoff_))
then
1669 l1=l1*sqrt((tlocal1/
block%wextra(ix^d,fl%Tcoff_))**5)
1674 call findl(tlocal1,l1,fl)
1675 l1 = l1*rho(ix^d)**2
1677 if(tlocal1<
block%wextra(ix^d,fl%Tcoff_))
then
1678 l1=l1*sqrt((tlocal1/
block%wextra(ix^d,fl%Tcoff_))**5)
1684 etherm = etherm - l1*dtstep
1686 if(
slab_uniform .and. fl%rad_cut .and. x(ix^d,ndim) .le. fl%rad_cut_hgt)
then
1687 de = de*exp(-(x(ix^d,ndim)-fl%rad_cut_hgt)**2/fl%rad_cut_dey**2)
1689 w(ix^d,fl%e_) = w(ix^d,fl%e_) -de
1697 integer,
intent(in) :: ixI^L, ixO^L
1698 double precision,
intent(in) :: qdt, x(ixI^S,1:ndim), wCT(ixI^S,1:nw)
1699 double precision,
intent(inout) :: w(ixI^S,1:nw)
1701 double precision :: L1,L2,Tlocal2
1702 double precision :: etemp
1703 double precision :: emin, Lmax
1704 double precision :: pth(ixI^S),pnew(ixI^S),rho(ixI^S),Rfactor(ixI^S),Te(ixI^S)
1707 call fl%get_pthermal(wct,x,ixi^l,ixo^l,pth)
1708 call fl%get_pthermal(w,x,ixi^l,ixo^l,pnew)
1709 call fl%get_rho(wct,x,ixi^l,ixo^l,rho)
1710 call fl%get_var_Rfactor(wct,x,ixi^l,ixo^l,rfactor)
1711 te(ixo^s)=pth(ixo^s)/(rho(ixo^s)*rfactor(ixo^s))
1713 {
do ix^db = ixo^lim^db\}
1714 emin = rho(ix^d)*fl%tlow*rfactor(ix^d)*invgam
1715 lmax = max(zero,pnew(ix^d)*invgam-emin)/qdt
1722 if( te(ix^d)<=fl%tcoolmin )
then
1726 if( te(ix^d)>=fl%tcoolmax )
then
1729 call findl(te(ix^d),l1,fl)
1731 l1 = l1*rho(ix^d)**2
1733 if(te(ix^d)<
block%wextra(ix^d,fl%Tcoff_))
then
1734 l1=l1*sqrt((te(ix^d)/
block%wextra(ix^d,fl%Tcoff_))**5)
1737 etemp = pth(ix^d)*invgam - l1*qdt
1738 tlocal2 = etemp*rc_gamma_1/(rho(ix^d)*rfactor(ix^d))
1740 if( tlocal2<=fl%tcoolmin )
then
1742 else if( tlocal2>=fl%tcoolmax )
then
1745 call findl(tlocal2,l2,fl)
1747 l2 = l2*rho(ix^d)**2
1749 if(tlocal2<
block%wextra(ix^d,fl%Tcoff_))
then
1750 l2=l2*sqrt((tlocal2/
block%wextra(ix^d,fl%Tcoff_))**5)
1753 if(
slab_uniform .and. fl%rad_cut .and. x(ix^d,ndim) .le. fl%rad_cut_hgt)
then
1754 l1 = l1*exp(-(x(ix^d,ndim)-fl%rad_cut_hgt)**2/fl%rad_cut_dey**2)
1755 l2 = l2*exp(-(x(ix^d,ndim)-fl%rad_cut_hgt)**2/fl%rad_cut_dey**2)
1757 w(ix^d,fl%e_) = w(ix^d,fl%e_) - min(half*(l1+l2),lmax)*qdt
1766 integer,
intent(in) :: ixI^L, ixO^L
1767 double precision,
intent(in) :: qdt, x(ixI^S,1:ndim), wCT(ixI^S,1:nw)
1768 double precision,
intent(inout) :: w(ixI^S,1:nw)
1770 double precision :: Ltemp,Tnew,f1,f2,pth(ixI^S), pnew(ixI^S), rho(ixI^S), Rfactor(ixI^S)
1771 double precision :: elocal, Te(ixI^S)
1772 double precision :: emin, Lmax, eold, enew, estep
1773 integer,
parameter :: maxiter = 100
1774 double precision,
parameter :: e_error = 1.0
d-6
1777 call fl%get_pthermal(wct,x,ixi^l,ixo^l,pth)
1778 call fl%get_pthermal(w,x,ixi^l,ixo^l,pnew)
1779 call fl%get_rho(wct,x,ixi^l,ixo^l,rho)
1780 call fl%get_var_Rfactor(wct,x,ixi^l,ixo^l,rfactor)
1781 te(ixo^s)=pth(ixo^s)/(rho(ixo^s)*rfactor(ixo^s))
1783 {
do ix^db = ixo^lim^db\}
1784 elocal = pth(ix^d)*invgam
1785 emin = rho(ix^d)*fl%tlow*rfactor(ix^d)*invgam
1786 lmax = max(zero,pnew(ix^d)*invgam-emin)/qdt
1792 if( te(ix^d)<=fl%tcoolmin )
then
1797 estep = -(smalldouble)
1800 if( j>maxiter )
call mpistop(
"Implicit cooling exceeds maximum iterations")
1801 tnew = enew*rc_gamma_1/(rho(ix^d)*rfactor(ix^d))
1802 if( tnew<=fl%tcoolmin )
then
1805 else if( tnew>=fl%tcoolmax )
then
1808 call findl(tnew,ltemp,fl)
1810 ltemp = ltemp*rho(ix^d)**2
1811 eold = enew + ltemp*qdt
1813 if(abs(half*f1/(elocal+eold)) < e_error)
exit
1815 if(tnew<
block%wextra(ix^d,fl%Tcoff_))
then
1816 ltemp=ltemp*sqrt((tnew/
block%wextra(ix^d,fl%Tcoff_))**5)
1819 if(j==1) estep = max((elocal-emin)*half,smalldouble)
1820 if(f1*f2 < zero) estep = -half*estep
1825 if(
slab_uniform .and. fl%rad_cut .and. x(ix^d,ndim) .le. fl%rad_cut_hgt)
then
1826 ltemp = ltemp*exp(-(x(ix^d,ndim)-fl%rad_cut_hgt)**2/fl%rad_cut_dey**2)
1828 w(ix^d,fl%e_) = w(ix^d,fl%e_) - min(ltemp,lmax)*qdt
1835 integer,
intent(in) :: ixI^L, ixO^L
1836 double precision,
intent(in) :: qdt, x(ixI^S,1:ndim), wCT(ixI^S,1:nw), wCTprim(ixI^S,1:nw)
1837 double precision,
intent(inout) :: w(ixI^S,1:nw)
1839 double precision :: Y1, Y2
1840 double precision :: L1, pth(ixI^S), Tlocal2, pnew(ixI^S)
1841 double precision :: rho(ixI^S), Te(ixI^S), rhonew(ixI^S), Rfactor(ixI^S)
1842 double precision :: emin, Lmax, fact
1843 double precision :: de, emax
1846 call fl%get_rho(wct,x,ixi^l,ixo^l,rho)
1847 call fl%get_var_Rfactor(wct,x,ixi^l,ixo^l,rfactor)
1848 if(phys_equi_pe)
then
1850 call fl%get_pthermal(wct,x,ixi^l,ixo^l,te)
1851 te(ixo^s)=te(ixo^s)/(rho(ixo^s)*rfactor(ixo^s))
1853 te(ixo^s)=wctprim(ixo^s,iw_e)/(rho(ixo^s)*rfactor(ixo^s))
1855 call fl%get_pthermal(w,x,ixi^l,ixo^l,pnew)
1856 call fl%get_rho(w,x,ixi^l,ixo^l,rhonew)
1858 fact = fl%lref*qdt/fl%tref
1860 {
do ix^db = ixo^lim^db\}
1861 emin = rhonew(ix^d)*fl%tlow*rfactor(ix^d)*invgam
1862 lmax = max(zero,pnew(ix^d)*invgam-emin)/qdt
1863 emax = max(zero,pnew(ix^d)*invgam-emin)
1869 if( te(ix^d)<=fl%tcoolmin )
then
1871 else if( te(ix^d)>=fl%tcoolmax )
then
1873 l1 = l1*rho(ix^d)**2
1875 if(te(ix^d)<
block%wextra(ix^d,fl%Tcoff_))
then
1876 l1=l1*sqrt((te(ix^d)/
block%wextra(ix^d,fl%Tcoff_))**5)
1880 if(
slab_uniform .and. fl%rad_cut .and. x(ix^d,ndim) .le. fl%rad_cut_hgt)
then
1881 l1 = l1*exp(-(x(ix^d,ndim)-fl%rad_cut_hgt)**2/fl%rad_cut_dey**2)
1883 w(ix^d,fl%e_) = w(ix^d,fl%e_)-l1*qdt
1885 call findy(te(ix^d),y1,fl)
1886 y2 = y1 + fact*rho(ix^d)*rc_gamma_1
1887 call findt(tlocal2,y2,fl)
1888 if(tlocal2<=fl%tcoolmin)
then
1891 de = (te(ix^d)-tlocal2)*rho(ix^d)*rfactor(ix^d)*invgam
1894 if(te(ix^d)<
block%wextra(ix^d,fl%Tcoff_))
then
1895 de=de*sqrt((te(ix^d)/
block%wextra(ix^d,fl%Tcoff_))**5)
1899 if(
slab_uniform .and. fl%rad_cut .and. x(ix^d,ndim) .le. fl%rad_cut_hgt)
then
1900 de = de*exp(-(x(ix^d,ndim)-fl%rad_cut_hgt)**2/fl%rad_cut_dey**2)
1902 w(ix^d,fl%e_) = w(ix^d,fl%e_)-de
1911 double precision,
intent(IN) :: tpoint
1912 double precision,
intent(OUT) :: lpoint
1916 lpoint =fl%l_PPL(fl%n_PPL) * ( tpoint / fl%t_PPL(fl%n_PPL) )**fl%a_PPL(fl%n_PPL)
1918 lpoint = fl%Lcool(fl%ncool) * sqrt( tpoint / fl%tcoolmax)
1927 double precision,
intent(IN) :: tpoint
1928 double precision,
intent(OUT) :: Lpoint
1931 double precision :: lgtp
1932 integer :: jl,jc,jh,i
1935 i = maxloc(fl%t_PPL, dim=1, mask=fl%t_PPL<tpoint)
1936 lpoint = fl%l_PPL(i) * (tpoint / fl%t_PPL(i))**fl%a_PPL(i)
1938 lgtp = dlog10(tpoint)
1939 jl = int((lgtp - fl%lgtcoolmin) /fl%lgstep) + 1
1940 lpoint = fl%Lcool(jl)+ (tpoint-fl%tcool(jl)) &
1941 * (fl%Lcool(jl+1)-fl%Lcool(jl)) &
1942 / (fl%tcool(jl+1)-fl%tcool(jl))
1966 end subroutine findl
1972 double precision,
intent(IN) :: tpoint
1973 double precision,
intent(OUT) :: Ypoint
1976 double precision :: lgtp
1977 double precision :: y_extra,factor
1978 integer :: jl,jc,jh,i
1981 i = maxloc(fl%t_PPL, dim=1, mask=fl%t_PPL<tpoint)
1982 factor = fl%l_PPL(fl%n_PPL+1) * fl%t_PPL(i) / (fl%l_PPL(i) * fl%t_PPL(fl%n_PPL+1))
1983 if(fl%a_PPL(i)==1.d0)
then
1984 y_extra = log( fl%t_PPL(i) / tpoint )
1986 y_extra = 1 / (1 - fl%a_PPL(i)) * (1 - ( fl%t_PPL(i) / tpoint )**(fl%a_PPL(i)-1) )
1988 ypoint = fl%y_PPL(i) + factor*y_extra
1990 lgtp = dlog10(tpoint)
1991 jl = int((lgtp - fl%lgtcoolmin) / fl%lgstep) + 1
1992 ypoint = fl%Yc(jl)+ (tpoint-fl%tcool(jl)) &
1993 * (fl%Yc(jl+1)-fl%Yc(jl)) &
1994 / (fl%tcool(jl+1)-fl%tcool(jl))
2020 end subroutine findy
2029 double precision,
intent(OUT) :: tpoint
2030 double precision,
intent(IN) :: Ypoint
2033 double precision :: factor
2034 integer :: jl,jc,jh,i
2037 i = minloc(fl%y_PPL, dim=1, mask=fl%y_PPL>ypoint)
2038 factor = fl%l_PPL(i) * fl%t_PPL(fl%n_PPL+1) / (fl%l_PPL(fl%n_PPL+1) * fl%t_PPL(i))
2039 if(fl%a_PPL(i)==1.d0)
then
2040 tpoint = fl%t_PPL(i) * exp( -1.d0 * factor * ( ypoint - fl%y_PPL(i)))
2042 tpoint = fl%t_PPL(i) * (1 - (1 - fl%a_PPL(i)) * factor * (ypoint - fl%y_PPL(i)))**(1 / (1 - fl%a_PPL(i)))
2045 if(ypoint >= fl%Yc(1))
then
2046 tpoint = fl%tcoolmin
2047 else if (ypoint == fl%Yc(fl%ncool))
then
2048 tpoint = fl%tcoolmax
2055 if(ypoint <= fl%Yc(jc))
then
2062 tpoint = fl%tcool(jl)+ (ypoint-fl%Yc(jl)) &
2063 * (fl%tcool(jl+1)-fl%tcool(jl)) &
2064 / (fl%Yc(jl+1)-fl%Yc(jl))
2067 end subroutine findt
2075 double precision,
intent(IN) :: tpoint
2076 double precision,
intent(OUT) :: dLpoint
2079 double precision :: lgtp
2082 lgtp = dlog10(tpoint)
2083 jl = int((lgtp -fl%lgtcoolmin) / fl%lgstep) + 1
2084 dlpoint = fl%dLdtcool(jl)+ (tpoint-fl%tcool(jl)) &
2085 * (fl%dLdtcool(jl+1)-fl%dLdtcool(jl)) &
2086 / (fl%tcool(jl+1)-fl%tcool(jl))
subroutine, public mpistop(message)
Exit MPI-AMRVAC with an error message.
This module contains definitions of global parameters and variables and some generic functions/subrou...
type(state), pointer block
Block pointer for using one block and its previous state.
double precision unit_time
Physical scaling factor for time.
integer, parameter unitpar
file handle for IO
logical any_source_split
if any normal source term is added in split fasion
integer it
Number of time steps taken.
double precision unit_numberdensity
Physical scaling factor for number density.
double precision unit_pressure
Physical scaling factor for pressure.
character(len=std_len), dimension(:), allocatable par_files
Which par files are used as input.
integer mype
The rank of the current MPI task.
integer, dimension(:), allocatable, parameter d
double precision unit_temperature
Physical scaling factor for temperature.
logical si_unit
Use SI units (.true.) or use cgs units (.false.)
logical phys_trac
Use TRAC (Johnston 2019 ApJL, 873, L22) for MHD or 1D HD.
logical slab_uniform
uniform Cartesian geometry or not (stretched Cartesian)
This module defines the procedures of a physics module. It contains function pointers for the various...
module radiative cooling – add optically thin radiative cooling for HD and MHD
double precision, dimension(1:5) t_fm
double precision, dimension(1:71) l_mlcosmol
subroutine cool_semiimplicit(qdt, ixIL, ixOL, wCT, w, x, fl)
double precision, dimension(1:51) l_mb
subroutine getvar_cooling_exact(qdt, ixIL, ixOL, wCT, w, x, coolrate, fl)
double precision, dimension(1:151) t_cl_solar
double precision, dimension(1:76) l_dm_2
subroutine floortemperature(qdt, ixIL, ixOL, wCT, w, x, fl)
double precision, dimension(1:110) l_spex
subroutine cool_explicit2(qdt, ixIL, ixOL, wCT, w, x, fl)
double precision, dimension(1:5) a_hildner
double precision, dimension(1:6) t_hildner
subroutine radiative_cooling_init(fl, read_params)
double precision, dimension(1:7) x_spex_dm_rough
double precision, dimension(1:55) l_colgan
subroutine cool_exact(qdt, ixIL, ixOL, wCT, wCTprim, w, x, fl)
subroutine cool_explicit1(qdt, ixIL, ixOL, wCT, w, x, fl)
subroutine cool_implicit(qdt, ixIL, ixOL, wCT, w, x, fl)
subroutine findy(tpoint, Ypoint, fl)
double precision, dimension(1:10) t_rosner
double precision, dimension(1:55) t_colgan
double precision, dimension(1:4) a_fm
subroutine create_y_ppl(fl)
subroutine finddldt(tpoint, dLpoint, fl)
subroutine findt(tpoint, Ypoint, fl)
double precision, dimension(1:101) t_dere
subroutine cooling_get_dt(w, ixIL, ixOL, dtnew, dxD, x, fl)
double precision, dimension(1:71) t_mlcosmol
double precision, dimension(1:15) t_spex_dm_fine
double precision, dimension(1:5) x_hildner
subroutine calc_l_extended(tpoint, lpoint, fl)
double precision, dimension(1:51) t_mb
double precision, dimension(1:14) a_spex_dm_fine
double precision, dimension(1:101) l_dere_photo
subroutine get_cool_equi(qdt, ixIL, ixOL, wCT, w, x, fl, res)
double precision, dimension(1:45) l_jccorona
double precision, dimension(1:76) t_dm_2
double precision, dimension(1:101) l_dere_corona
double precision, dimension(1:151) l_cl_solar
double precision, dimension(1:71) l_dm
double precision, dimension(1:9) x_rosner
double precision, dimension(1:7) x_klimchuk
double precision, dimension(1:7) a_spex_dm_rough
double precision, dimension(1:4) x_fm
double precision, dimension(1:45) t_jccorona
double precision, dimension(1:71) t_mlwc
double precision, dimension(1:71) t_mlsolar1
double precision, dimension(1:110) nenh_spex
subroutine findl(tpoint, Lpoint, fl)
double precision, dimension(1:151) t_cl_ism
double precision, dimension(1:8) t_klimchuk
double precision, dimension(1:151) l_cl_ism
double precision, dimension(1:71) l_mlwc
subroutine getvar_cooling(ixIL, ixOL, w, x, coolrate, fl)
double precision, dimension(1:8) t_spex_dm_rough
double precision, dimension(1:7) a_klimchuk
double precision, dimension(1:9) a_rosner
double precision, dimension(1:71) l_mlsolar1
subroutine radiative_cooling_init_params(phys_gamma, He_abund)
Radiative cooling initialization.
subroutine radiative_cooling_add_source(qdt, ixIL, ixOL, wCT, wCTprim, w, x, qsourcesplit, active, fl)
double precision, dimension(1:110) t_spex
double precision, dimension(1:14) x_spex_dm_fine
double precision, dimension(1:71) t_dm