MPI-AMRVAC 3.1
The MPI - Adaptive Mesh Refinement - Versatile Advection Code (development version)
Loading...
Searching...
No Matches
mod_particle_sample.t
Go to the documentation of this file.
1!> Scattered sampling based on fixed- or moving-particle interpolation
2!> By Fabio Bacchini (2020)
5
6 private
7
8 public :: sample_init
10
11contains
12
13 subroutine sample_init()
15 integer :: idir
16
17 ngridvars=nw
18
19 particles_fill_gridvars => sample_fill_gridvars
20
21 if (associated(particles_define_additional_gridvars)) then
23 end if
24
25 particles_integrate => sample_integrate_particles
26
27 end subroutine sample_init
28
30 ! initialise the particles (=fixed interpolation points)
34
35 double precision :: x(3, num_particles)
36 double precision :: v(3, num_particles)
37 double precision :: q(num_particles)
38 double precision :: m(num_particles)
39 double precision :: rrd(num_particles,ndir)
40 double precision :: w(ixg^t,1:nw)
41 double precision :: defpayload(ndefpayload)
42 double precision :: usrpayload(nusrpayload)
43 integer :: n, idir, igrid, ipe_particle, nparticles_local
44 logical :: follow(num_particles), check
45
46 follow = .false.
47 x = 0.0d0
48
49 if (mype==0) then
50 if (.not. associated(usr_create_particles)) then
51 ! Randomly distributed
52 do idir=1,ndir
53 do n = 1, num_particles
54 rrd(n,idir) = rng%unif_01()
55 end do
56 end do
57 do n=1, num_particles
58 {^d&x(^d,n) = xprobmin^d + rrd(n+1,^d) * (xprobmax^d - xprobmin^d)\}
59 end do
60 else
61 call usr_create_particles(num_particles, x, v, q, m, follow)
62 end if
63 end if
64
65 call mpi_bcast(x,3*num_particles,mpi_double_precision,0,icomm,ierrmpi)
66 call mpi_bcast(follow,num_particles,mpi_logical,0,icomm,ierrmpi)
67
68 nparticles_local = 0
69
70 do n=1,num_particles
71 call find_particle_ipe(x(:,n),igrid,ipe_particle)
72 particle(n)%igrid = igrid
73 particle(n)%ipe = ipe_particle
74
75 if(ipe_particle == mype) then
76 check = .true.
77
78 ! Check for user-defined modifications or rejection conditions
79 if (associated(usr_check_particle)) call usr_check_particle(igrid, x(:,n), v(:,n), q(n), m(n), follow(n), check)
80 if (check) then
82 else
83 cycle
84 end if
85
86 nparticles_local = nparticles_local + 1
87
88 allocate(particle(n)%self)
89 particle(n)%self%follow = follow(n)
90 particle(n)%self%index = n
91 particle(n)%self%time = global_time
92 particle(n)%self%dt = 0.0d0
93 particle(n)%self%x = 0.d0
94 particle(n)%self%x(:) = x(:,n)
95 particle(n)%self%u(:) = 0.d0
96
97 allocate(particle(n)%payload(npayload))
98 call sample_update_payload(igrid,x(:,n),v(:,n),q(n),m(n),defpayload,ndefpayload,0.d0)
99 particle(n)%payload(1:ndefpayload) = defpayload
100 if (associated(usr_update_payload)) then
101 call usr_update_payload(igrid,x(:,n),v(:,n),q(n),m(n),usrpayload,nusrpayload,0.d0)
102 particle(n)%payload(ndefpayload+1:npayload)=usrpayload
103 end if
104 end if
105
106 end do
107
108 call mpi_allreduce(nparticles_local,nparticles,1,mpi_integer,mpi_sum,icomm,ierrmpi)
109
110 end subroutine sample_create_particles
111
112 subroutine sample_fill_gridvars
114
115 double precision, dimension(ixG^T,1:nw) :: w
116 integer :: igrid, iigrid, idir
117
118 do iigrid=1,igridstail; igrid=igrids(iigrid);
119
120 ^d&dxlevel(^d)=rnode(rpdx^d_,igrid);
121 w(ixg^t,1:nw) = ps(igrid)%w(ixg^t,1:nw)
122 call phys_to_primitive(ixg^ll,ixg^ll,w,ps(igrid)%x)
123 ! fill all variables:
124 gridvars(igrid)%w(ixg^t,1:ngridvars) = w(ixg^t,1:ngridvars)
125
126 end do
127
128 end subroutine sample_fill_gridvars
129
130 subroutine sample_integrate_particles(end_time)
131 ! this interpolates the HD/MHD quantities at the particle positions
134 double precision, intent(in) :: end_time
135
136 double precision, dimension(1:ndir) :: v, x
137 double precision :: defpayload(ndefpayload)
138 double precision :: usrpayload(nusrpayload)
139 double precision :: tloc, tlocnew, dt_p, h1
140 double precision,parameter :: eps=1.0d-6, hmin=1.0d-8
141 integer :: ipart, iipart, igrid
142 integer :: nok, nbad, ierror
143
144 do iipart=1,nparticles_active_on_mype
145 ipart = particles_active_on_mype(iipart);
146 dt_p = sample_get_particle_dt(particle(ipart), end_time)
147 particle(ipart)%self%dt = dt_p
148
149 igrid = particle(ipart)%igrid
150 igrid_working = igrid
151 tloc = particle(ipart)%self%time
152 x(1:ndir) = particle(ipart)%self%x(1:ndir)
153 tlocnew = tloc+dt_p
154
155 ! Position update (if defined)
156 ! TODO: this may create problems with interpolation out of boundaries
157 if (associated(usr_particle_position)) call usr_particle_position(x,particle(ipart)%self%index,tloc,tlocnew)
158 particle(ipart)%self%x(1:ndir) = x
159
160 ! Time update
161 particle(ipart)%self%time = tlocnew
162
163 ! Update payload
164 call sample_update_payload(igrid,x,v,0.d0,0.d0,defpayload,ndefpayload,tlocnew)
165 particle(ipart)%payload(1:ndefpayload) = defpayload
166 if (associated(usr_update_payload)) then
167 call usr_update_payload(igrid,x,v,0.d0,0.d0,usrpayload,nusrpayload,tlocnew)
168 particle(ipart)%payload(ndefpayload+1:npayload) = usrpayload
169 end if
170
171 end do
172
173 end subroutine sample_integrate_particles
174
175 !> Payload update
176 subroutine sample_update_payload(igrid,xpart,upart,qpart,mpart,mypayload,mynpayload,particle_time)
178 integer, intent(in) :: igrid,mynpayload
179 double precision, intent(in) :: xpart(1:ndir),upart(1:ndir),qpart,mpart,particle_time
180 double precision, intent(out) :: mypayload(mynpayload)
181 double precision :: myw(ixg^t,1:nw),mywold(ixg^t,1:nw)
182 double precision :: wp, wpold, td
183 integer :: ii
184
185
186 ! There are npayload=nw payloads, one for each primitive fluid quantity
187 myw(ixg^t,1:nw) = gridvars(igrid)%w(ixg^t,1:nw)
188 if (time_advance) mywold(ixg^t,1:nw) = gridvars(igrid)%wold(ixg^t,1:nw)
189
190 if (.not.saveprim) then
191 call phys_to_conserved(ixg^ll,ixg^ll,myw,ps(igrid)%x)
192 if (time_advance) call phys_to_conserved(ixg^ll,ixg^ll,mywold,ps(igrid)%x)
193 end if
194
195 do ii=1,mynpayload
196 call interpolate_var(igrid,ixg^ll,ixm^ll,myw(ixg^t,ii),ps(igrid)%x,xpart,wp)
197 if (time_advance) then
198 td = (particle_time - global_time) / dt
199 call interpolate_var(igrid,ixg^ll,ixm^ll,mywold(ixg^t,ii),ps(igrid)%x,xpart,wpold)
200 wp = wpold * (1.0d0 - td) + wp * td
201 end if
202 mypayload(ii) = wp*w_convert_factor(ii)
203 end do
204
205 end subroutine sample_update_payload
206
207 function sample_get_particle_dt(partp, end_time) result(dt_p)
209 use mod_geometry
211 type(particle_ptr), intent(in) :: partp
212 double precision, intent(in) :: end_time
213 double precision :: dt_p
214 double precision :: tout, dt_cfl
215 double precision :: v(1:ndir), xp(3), told, tnew
216 integer :: ipart, iipart, nout, id
217
218 if (const_dt_particles > 0) then
219 dt_p = const_dt_particles
220 return
221 end if
222
223 dt_p = dtsave_particles
224
225 ! Make sure the user-defined particle movement doesn't break communication
226 if (associated(usr_particle_position)) then
227 xp = partp%self%x
228 told = partp%self%time
229 tnew = told+dt_p
230 call usr_particle_position(xp, partp%self%index, told, tnew)
231 do while (.not. point_in_igrid_ghostc(xp,partp%igrid,1))
232 dt_p = dt_p/10.d0
233 xp = partp%self%x
234 tnew = told+dt_p
235 call usr_particle_position(xp, partp%self%index, told, tnew)
236 end do
237 end if
238
239 ! Make sure we don't advance beyond end_time
240 call limit_dt_endtime(end_time - partp%self%time, dt_p)
241
242 end function sample_get_particle_dt
243
244end module mod_particle_sample
Module with geometry-related routines (e.g., divergence, curl)
Definition mod_geometry.t:2
This module contains definitions of global parameters and variables and some generic functions/subrou...
double precision, dimension(:), allocatable w_convert_factor
Conversion factors the primitive variables.
double precision global_time
The global simulation time.
logical saveprim
If true, convert from conservative to primitive variables in output.
integer icomm
The MPI communicator.
integer mype
The rank of the current MPI task.
double precision, dimension(:), allocatable, parameter d
double precision dt
global time step
integer ndir
Number of spatial dimensions (components) for vector variables.
integer ixm
the mesh range of a physical block without ghost cells
integer ierrmpi
A global MPI error return code.
logical time_advance
do time evolving
double precision, dimension(:,:), allocatable rnode
Corner coordinates.
double precision, dimension(^nd) dxlevel
store unstretched cell size of current level
Module with shared functionality for all the particle movers.
pure subroutine limit_dt_endtime(t_left, dt_p)
integer num_particles
Number of particles.
double precision const_dt_particles
If positive, a constant time step for the particles.
double precision dtsave_particles
Time interval to save particles.
integer ngridvars
Number of variables for grid field.
integer nusrpayload
Number of user-defined payload variables for a particle.
subroutine find_particle_ipe(x, igrid_particle, ipe_particle)
integer npayload
Number of total payload variables for a particle.
integer, dimension(:), allocatable particles_active_on_mype
Array of identity numbers of active particles in current processor.
subroutine push_particle_into_particles_on_mype(ipart)
integer nparticles_active_on_mype
Number of active particles in current processor.
procedure(sub_define_additional_gridvars), pointer particles_define_additional_gridvars
integer nparticles
Identity number and total number of particles.
type(particle_ptr), dimension(:), allocatable particle
procedure(sub_integrate), pointer particles_integrate
procedure(sub_fill_gridvars), pointer particles_fill_gridvars
integer ndefpayload
Number of default payload variables for a particle.
logical function point_in_igrid_ghostc(x, igrid, ngh)
Quick check if particle coordinate is inside igrid (ghost cells included, except the last ngh)
integer igrid_working
set the current igrid for the particle integrator:
subroutine interpolate_var(igrid, ixil, ixol, gf, x, xloc, gfloc)
Scattered sampling based on fixed- or moving-particle interpolation By Fabio Bacchini (2020)
subroutine, public sample_init()
subroutine, public sample_create_particles()
Module with all the methods that users can customize in AMRVAC.
procedure(particle_position), pointer usr_particle_position
procedure(check_particle), pointer usr_check_particle
procedure(create_particles), pointer usr_create_particles
procedure(update_payload), pointer usr_update_payload