55 integer,
public,
protected ::
rho_
58 integer,
allocatable,
public,
protected ::
mom(:)
61 integer,
public,
protected ::
e_
64 integer,
public,
protected ::
p_
67 integer,
public,
protected ::
te_
72 integer,
public,
protected ::
q_
81 double precision,
protected :: small_e
90 double precision,
public,
protected ::
h_ion_fr=1d0
93 double precision,
public,
protected ::
he_ion_fr=1d0
100 double precision,
public,
protected ::
rr=1d0
107 double precision :: gamma_1, inv_gamma_1
112 function fun_kin_en(w, ixI^L, ixO^L, inv_rho)
result(ke)
114 integer,
intent(in) :: ixi^l, ixo^l
115 double precision,
intent(in) :: w(ixi^s, nw)
116 double precision :: ke(ixo^s)
117 double precision,
intent(in),
optional :: inv_rho(ixo^s)
118 end function fun_kin_en
146 subroutine ffhd_read_params(files)
149 character(len=*),
intent(in) :: files(:)
157 do n = 1,
size(files)
158 open(
unitpar, file=trim(files(n)), status=
"old")
159 read(
unitpar, ffhd_list,
end=111)
162 end subroutine ffhd_read_params
167 integer,
intent(in) :: fh
168 integer,
parameter :: n_par = 1
169 double precision :: values(n_par)
170 character(len=name_len) :: names(n_par)
171 integer,
dimension(MPI_STATUS_SIZE) :: st
174 call mpi_file_write(fh, n_par, 1, mpi_integer, st, er)
178 call mpi_file_write(fh, values, n_par, mpi_double_precision, st, er)
179 call mpi_file_write(fh, names, n_par * name_len, mpi_character, st, er)
199 if(
mype==0)
write(*,*)
'WARNING: set ffhd_thermal_conduction=F when ffhd_energy=F'
203 if(
mype==0)
write(*,*)
'WARNING: set ffhd_hyperbolic_thermal_conduction=F when ffhd_energy=F'
207 if(
mype==0)
write(*,*)
'WARNING: set ffhd_radiative_cooling=F when ffhd_energy=F'
211 if(
mype==0)
write(*,*)
'WARNING: set ffhd_trac=F when ffhd_energy=F'
215 if(
mype==0)
write(*,*)
'WARNING: set ffhd_partial_ionization=F when ffhd_energy=F'
221 if(
mype==0)
write(*,*)
'WARNING: set ffhd_partial_ionization=F when eq_state_units=F'
227 if(
mype==0)
write(*,*)
'WARNING: turn off parabolic TC when using hyperbolic TC'
230 physics_type =
"ffhd"
232 phys_internal_e=.false.
244 if(
mype==0)
write(*,*)
'WARNING: reset ffhd_trac_type=1 for 1D simulation'
249 if(
mype==0)
write(*,*)
'WARNING: set ffhd_trac_mask==bigdouble for global TRAC method'
253 allocate(start_indices(number_species),stop_indices(number_species))
260 mom(:) = var_set_momentum(1)
264 e_ = var_set_energy()
282 stop_indices(1)=nwflux
286 te_ = var_set_auxvar(
'Te',
'Te')
307 if(.not.
allocated(flux_type))
then
308 allocate(flux_type(
ndir, nwflux))
309 flux_type = flux_default
310 else if(any(shape(flux_type) /= [
ndir, nwflux]))
then
311 call mpistop(
"phys_check error: flux_type has wrong shape")
369 call mpistop(
"thermal conduction needs ffhd_energy=T")
372 call mpistop(
"hyperbolic thermal conduction needs ffhd_energy=T")
375 call mpistop(
"radiative cooling needs ffhd_energy=T")
380 phys_req_diagonal = .true.
404 rc_fl%get_var_Rfactor => ffhd_get_rfactor
407 rc_fl%has_equi = .false.
412 te_fl_ffhd%get_var_Rfactor => ffhd_get_rfactor
434 case(
'EIvtiCCmpi',
'EIvtuCCmpi')
436 case(
'ESvtiCCmpi',
'ESvtuCCmpi')
438 case(
'SIvtiCCmpi',
'SIvtuCCmpi')
440 case(
'WIvtiCCmpi',
'WIvtuCCmpi')
443 call mpistop(
"Error in synthesize emission: Unknown convert_type")
452 integer,
intent(in) :: ixI^L, ixO^L, igrid, nflux
453 double precision,
intent(in) :: x(ixI^S,1:ndim)
454 double precision,
intent(inout) :: wres(ixI^S,1:nw), w(ixI^S,1:nw)
455 double precision,
intent(in) :: my_dt
456 logical,
intent(in) :: fix_conserve_at_step
467 integer,
intent(in) :: ixi^
l, ixo^
l
468 double precision,
intent(in) ::
dx^
d, x(ixi^s,1:
ndim)
469 double precision,
intent(in) :: w(ixi^s,1:nw)
470 double precision :: dtnew
478 integer,
intent(in) :: ixI^L,ixO^L
479 double precision,
intent(inout) :: w(ixI^S,1:nw)
480 double precision,
intent(in) :: x(ixI^S,1:ndim)
481 integer,
intent(in) :: step
482 character(len=140) :: error_msg
484 write(error_msg,
"(a,i3)")
"Thermal conduction step ", step
490 type(tc_fluid),
intent(inout) :: fl
493 logical :: tc_saturate=.false.
494 double precision :: tc_k_para=0d0
495 character(len=std_len) :: tc_slope_limiter=
"MC"
497 namelist /tc_list/ tc_saturate, tc_slope_limiter, tc_k_para
501 read(
unitpar, tc_list,
end=111)
505 fl%tc_saturate = tc_saturate
506 fl%tc_k_para = tc_k_para
507 select case(tc_slope_limiter)
509 fl%tc_slope_limiter = 0
512 fl%tc_slope_limiter = 1
515 fl%tc_slope_limiter = 2
518 fl%tc_slope_limiter = 3
521 fl%tc_slope_limiter = 4
523 call mpistop(
"Unknown tc_slope_limiter, choose MC, minmod")
530 type(rc_fluid),
intent(inout) :: fl
532 integer :: ncool = 4000
533 double precision :: cfrac=0.1d0
536 character(len=std_len) :: coolcurve=
'JCcorona'
539 character(len=std_len) :: coolmethod=
'exact'
542 logical :: Tfix=.false.
548 logical :: rc_split=.false.
549 logical :: rad_cut=.false.
550 double precision :: rad_cut_hgt=0.5d0
551 double precision :: rad_cut_dey=0.15d0
553 namelist /rc_list/ coolcurve, coolmethod, ncool, cfrac, tlow, tfix, rc_split, rad_cut, rad_cut_hgt, rad_cut_dey
557 read(
unitpar, rc_list,
end=111)
562 fl%coolcurve=coolcurve
563 fl%coolmethod=coolmethod
569 fl%rad_cut_hgt=rad_cut_hgt
570 fl%rad_cut_dey=rad_cut_dey
580 if (
ffhd_gamma <= 0.0d0)
call mpistop (
"Error: ffhd_gamma <= 0")
581 if (
ffhd_adiab < 0.0d0)
call mpistop (
"Error: ffhd_adiab < 0")
585 call mpistop (
"Error: ffhd_gamma <= 0 or ffhd_gamma == 1")
586 inv_gamma_1=1.d0/gamma_1
591 call mpistop(
"usr_set_equi_vars has to be implemented in the user file")
597 double precision :: mp,kB
598 double precision :: a,b
645 logical,
intent(in) :: primitive
646 integer,
intent(in) :: ixI^L, ixO^L
647 double precision,
intent(in) :: w(ixI^S,nw)
648 double precision :: tmp(ixI^S)
649 logical,
intent(inout) :: flag(ixI^S,1:nw)
659 where(tmp(ixo^s) < small_e) flag(ixo^s,
e_) = .true.
666 integer,
intent(in) :: ixI^L, ixO^L
667 double precision,
intent(inout) :: w(ixI^S, nw)
668 double precision,
intent(in) :: x(ixI^S, 1:ndim)
669 double precision :: inv_gamma2(ixO^S)
673 w(ixo^s,
e_)=w(ixo^s,
p_)*inv_gamma_1+half*w(ixo^s,
mom(1))**2*w(ixo^s,
rho_)
680 integer,
intent(in) :: ixI^L, ixO^L
681 double precision,
intent(inout) :: w(ixI^S, nw)
682 double precision,
intent(in) :: x(ixI^S, 1:ndim)
683 double precision :: inv_rho(ixO^S), gamma2(ixO^S)
687 call ffhd_handle_small_values(.false., w, x, ixi^l, ixo^l,
'ffhd_to_primitive_origin')
690 w(ixo^s,
mom(1)) = w(ixo^s,
mom(1))/w(ixo^s,
rho_)
692 w(ixo^s,
p_)=gamma_1*(w(ixo^s,
e_)-half*w(ixo^s,
rho_)*w(ixo^s,
mom(1))**2)
698 integer,
intent(in) :: ixi^
l, ixo^
l
699 double precision,
intent(inout) :: w(ixi^s, nw)
700 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
707 integer,
intent(in) :: ixi^
l, ixo^
l
708 double precision,
intent(inout) :: w(ixi^s, nw)
709 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
720 logical,
intent(in) :: primitive
721 integer,
intent(in) :: ixI^L,ixO^L
722 double precision,
intent(inout) :: w(ixI^S,1:nw)
723 double precision,
intent(in) :: x(ixI^S,1:ndim)
724 character(len=*),
intent(in) :: subname
726 logical :: flag(ixI^S,1:nw)
727 double precision :: tmp2(ixI^S)
729 call phys_check_w(primitive, ixi^l, ixi^l, w, flag)
736 where(flag(ixo^s,
rho_)) w(ixo^s,
mom(1)) = 0.0d0
742 where(flag(ixo^s,
e_))
759 if(.not.primitive)
then
772 integer,
intent(in) :: ixI^L, ixO^L
773 double precision,
intent(in) :: w(ixI^S,nw), x(ixI^S,1:ndim)
774 double precision,
intent(out) :: v(ixI^S,ndir)
775 double precision :: rho(ixI^S)
779 rho(ixo^s)=1.d0/rho(ixo^s)
781 v(ixo^s,ndir) = w(ixo^s,
mom(1))*
block%B0(ixo^s,idir,0)*rho(ixo^s)
787 integer,
intent(in) :: ixi^
l, ixo^
l, idim
788 double precision,
intent(in) :: w(ixi^s,nw), x(ixi^s,1:
ndim)
789 double precision,
intent(out) :: v(ixi^s)
790 double precision :: rho(ixi^s)
793 v(ixo^s) = (w(ixo^s,
mom(1))*
block%B0(ixo^s,idim,0)) / rho(ixo^s)
798 integer,
intent(in) :: ixI^L, ixO^L, idim
799 double precision,
intent(in) :: w(ixI^S, nw), x(ixI^S,1:ndim)
800 double precision,
intent(inout) :: cmax(ixI^S)
801 double precision :: vel(ixI^S)
806 cmax(ixo^s)=abs(vel(ixo^s))+cmax(ixo^s)
811 integer,
intent(in) :: ixI^L, ixO^L
812 double precision,
intent(in) :: w(ixI^S, nw), x(ixI^S,1:ndim)
813 double precision,
intent(inout) :: cs2max
814 double precision :: cs2(ixI^S)
817 cs2max=maxval(cs2(ixo^s))
822 integer,
intent(in) :: ixI^L, ixO^L
823 double precision,
intent(in) :: w(ixI^S, nw), x(ixI^S,1:ndim)
824 double precision,
intent(inout) :: a2max(ndim)
825 double precision :: a2(ixI^S,ndim,nw)
826 integer :: gxO^L,hxO^L,jxO^L,kxO^L,i,j
831 hxo^l=ixo^l-
kr(i,^
d);
832 gxo^l=hxo^l-
kr(i,^
d);
833 jxo^l=ixo^l+
kr(i,^
d);
834 kxo^l=jxo^l+
kr(i,^
d);
835 a2(ixo^s,i,1:nw)=abs(-w(kxo^s,1:nw)+16.d0*w(jxo^s,1:nw)&
836 -30.d0*w(ixo^s,1:nw)+16.d0*w(hxo^s,1:nw)-w(gxo^s,1:nw))
837 a2max(i)=maxval(a2(ixo^s,i,1:nw))/12.d0/
dxlevel(i)**2
844 integer,
intent(in) :: ixI^L,ixO^L
845 double precision,
intent(in) :: x(ixI^S,1:ndim)
846 double precision,
intent(inout) :: w(ixI^S,1:nw)
847 double precision,
intent(out) :: Tco_local,Tmax_local
848 double precision,
parameter :: trac_delta=0.25d0
849 double precision :: tmp1(ixI^S),Te(ixI^S),lts(ixI^S)
850 double precision,
dimension(ixI^S,1:ndir) :: bunitvec
851 double precision,
dimension(ixI^S,1:ndim) :: gradT
852 double precision :: Bdir(ndim)
853 double precision :: ltrc,ltrp,altr(ixI^S)
854 integer :: idims,jxO^L,hxO^L,ixA^D,ixB^D
855 integer :: jxP^L,hxP^L,ixP^L,ixQ^L
856 logical :: lrlt(ixI^S)
860 tmax_local=maxval(te(ixo^s))
870 lts(ixo^s)=0.5d0*abs(te(jxo^s)-te(hxo^s))/te(ixo^s)
872 where(lts(ixo^s) > trac_delta)
875 if(any(lrlt(ixo^s)))
then
876 tco_local=maxval(te(ixo^s), mask=lrlt(ixo^s))
887 lts(ixp^s)=0.5d0*abs(te(jxp^s)-te(hxp^s))/te(ixp^s)
888 lts(ixp^s)=max(one, (exp(lts(ixp^s))/ltrc)**ltrp)
889 lts(ixo^s)=0.25d0*(lts(jxo^s)+two*lts(ixo^s)+lts(hxo^s))
890 block%wextra(ixo^s,
tcoff_)=te(ixo^s)*lts(ixo^s)**0.4d0
892 call mpistop(
"ffhd_trac_type not allowed for 1D simulation")
907 call gradient(te,ixi^l,ixo^l,idims,tmp1)
908 gradt(ixo^s,idims)=tmp1(ixo^s)
910 bunitvec(ixo^s,:)=
block%B0(ixo^s,:,0)
915 ixb^d=(ixomin^d+ixomax^d-1)/2+ixa^d;
916 bdir(1:ndim)=bdir(1:ndim)+bunitvec(ixb^d,1:ndim)
918 if(sum(bdir(:)**2) .gt. zero)
then
919 bdir(1:ndim)=bdir(1:ndim)/dsqrt(sum(bdir(:)**2))
921 block%special_values(3:ndim+2)=bdir(1:ndim)
923 tmp1(ixo^s)=dsqrt(sum(bunitvec(ixo^s,:)**2,dim=ndim+1))
924 where(tmp1(ixo^s)/=0.d0)
925 tmp1(ixo^s)=1.d0/tmp1(ixo^s)
927 tmp1(ixo^s)=bigdouble
931 bunitvec(ixo^s,idims)=bunitvec(ixo^s,idims)*tmp1(ixo^s)
934 lts(ixo^s)=abs(sum(gradt(ixo^s,1:ndim)*bunitvec(ixo^s,1:ndim),dim=ndim+1))/te(ixo^s)
936 if(slab_uniform)
then
937 lts(ixo^s)=minval(dxlevel)*lts(ixo^s)
939 lts(ixo^s)=minval(block%ds(ixo^s,:),dim=ndim+1)*lts(ixo^s)
942 where(lts(ixo^s) > trac_delta)
945 if(any(lrlt(ixo^s)))
then
946 block%special_values(1)=maxval(te(ixo^s), mask=lrlt(ixo^s))
948 block%special_values(1)=zero
950 block%special_values(2)=tmax_local
968 call gradient(te,ixi^l,ixq^l,idims,gradt(ixi^s,idims))
969 call gradientx(te,x,ixi^l,hxp^l,idims,gradt(ixi^s,idims),.false.)
970 call gradientq(te,x,ixi^l,jxp^l,idims,gradt(ixi^s,idims))
972 bunitvec(ixp^s,:)=block%B0(ixp^s,:,0)
973 lts(ixp^s)=abs(sum(gradt(ixp^s,1:ndim)*bunitvec(ixp^s,1:ndim),dim=ndim+1))/te(ixp^s)
974 if(slab_uniform)
then
975 lts(ixp^s)=minval(dxlevel)*lts(ixp^s)
977 lts(ixp^s)=minval(block%ds(ixp^s,:),dim=ndim+1)*lts(ixp^s)
979 lts(ixp^s)=max(one, (exp(lts(ixp^s))/ltrc)**ltrp)
984 hxo^l=ixp^l-kr(idims,^d);
985 jxo^l=ixp^l+kr(idims,^d);
986 altr(ixp^s)=altr(ixp^s)+0.25d0*(lts(hxo^s)+two*lts(ixp^s)+lts(jxo^s))*bunitvec(ixp^s,idims)**2
988 block%wextra(ixp^s,
tcoff_)=te(ixp^s)*altr(ixp^s)**0.4d0
992 call mpistop(
"unknown ffhd_trac_type")
997 subroutine ffhd_get_cbounds(wLC,wRC,wLp,wRp,x,ixI^L,ixO^L,idim,Hspeed,cmax,cmin)
999 integer,
intent(in) :: ixI^L, ixO^L, idim
1000 double precision,
intent(in) :: wLC(ixI^S, nw), wRC(ixI^S, nw)
1001 double precision,
intent(in) :: wLp(ixI^S, nw), wRp(ixI^S, nw)
1002 double precision,
intent(in) :: x(ixI^S,1:ndim)
1003 double precision,
intent(inout) :: cmax(ixI^S,1:number_species)
1004 double precision,
intent(inout),
optional :: cmin(ixI^S,1:number_species)
1005 double precision,
intent(in) :: Hspeed(ixI^S,1:number_species)
1006 double precision :: wmean(ixI^S,nw)
1007 double precision,
dimension(ixI^S) :: umean, dmean, csoundL, csoundR, tmp1,tmp2,tmp3
1014 tmp1(ixo^s)=sqrt(wlp(ixo^s,
rho_))
1015 tmp2(ixo^s)=sqrt(wrp(ixo^s,
rho_))
1016 tmp3(ixo^s)=1.d0/(tmp1(ixo^s)+tmp2(ixo^s))
1017 umean(ixo^s)=(wlp(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim)*tmp1(ixo^s)&
1018 +wrp(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim)*tmp2(ixo^s))*tmp3(ixo^s)
1021 dmean(ixo^s)=(tmp1(ixo^s)*csoundl(ixo^s)+tmp2(ixo^s)*csoundr(ixo^s)) * &
1022 tmp3(ixo^s) + 0.5d0*tmp1(ixo^s)*tmp2(ixo^s)*tmp3(ixo^s)**2 * &
1023 (wrp(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim)-wlp(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim))**2
1024 dmean(ixo^s)=dsqrt(dmean(ixo^s))
1025 if(
present(cmin))
then
1026 cmin(ixo^s,1)=umean(ixo^s)-dmean(ixo^s)
1027 cmax(ixo^s,1)=umean(ixo^s)+dmean(ixo^s)
1029 cmax(ixo^s,1)=abs(umean(ixo^s))+dmean(ixo^s)
1032 wmean(ixo^s,1:nwflux)=0.5d0*(wlc(ixo^s,1:nwflux)+wrc(ixo^s,1:nwflux))
1033 tmp1(ixo^s)=wmean(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim)/wmean(ixo^s,
rho_)
1035 if(
present(cmin))
then
1036 cmax(ixo^s,1)=max(tmp1(ixo^s)+csoundr(ixo^s),zero)
1037 cmin(ixo^s,1)=min(tmp1(ixo^s)-csoundr(ixo^s),zero)
1039 cmax(ixo^s,1)=abs(tmp1(ixo^s))+csoundr(ixo^s)
1045 csoundl(ixo^s)=max(csoundl(ixo^s),csoundr(ixo^s))
1046 if(
present(cmin))
then
1047 cmin(ixo^s,1)=min(wlp(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim),&
1048 wrp(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim))-csoundl(ixo^s)
1049 cmax(ixo^s,1)=max(wlp(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim),&
1050 wrp(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim))+csoundl(ixo^s)
1052 cmax(ixo^s,1)=max(wlp(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim),&
1053 wrp(ixo^s,
mom(1))*
block%B0(ixo^s,idim,idim))+csoundl(ixo^s)
1060 integer,
intent(in) :: ixI^L, ixO^L, idim
1061 double precision,
intent(in) :: w(ixI^S, nw), x(ixI^S,1:ndim)
1062 double precision,
intent(out):: csound(ixI^S)
1065 csound(ixo^s) = dsqrt(csound(ixo^s))*abs(
block%B0(ixo^s,idim,idim))
1072 integer,
intent(in) :: ixI^L, ixO^L, idim
1073 double precision,
intent(in) :: w(ixI^S, nw), x(ixI^S,1:ndim)
1074 double precision,
intent(out):: csound(ixI^S)
1081 csound(ixo^s) = dsqrt(csound(ixo^s))
1087 integer,
intent(in) :: ixI^L, ixO^L
1088 double precision,
intent(in) :: w(ixI^S,nw)
1089 double precision,
intent(in) :: x(ixI^S,1:ndim)
1090 double precision,
intent(out):: pth(ixI^S)
1099 integer,
intent(in) :: ixI^L, ixO^L
1100 double precision,
intent(in) :: w(ixI^S,nw)
1101 double precision,
intent(in) :: x(ixI^S,1:ndim)
1102 double precision,
intent(out):: pth(ixI^S)
1107 {
do ix^db= ixo^lim^db\}
1112 elseif(check_small_values)
then
1113 {
do ix^db= ixo^lim^db\}
1114 if(pth(ix^d)<small_pressure)
then
1115 write(*,*)
"Error: small value of gas pressure",pth(ix^d),&
1116 " encountered when call ffhd_get_pthermal"
1117 write(*,*)
"Iteration: ", it,
" Time: ", global_time
1118 write(*,*)
"Location: ", x(ix^d,:)
1119 write(*,*)
"Cell number: ", ix^d
1121 write(*,*) trim(cons_wnames(iw)),
": ",w(ix^d,iw)
1124 if(trace_small_values)
write(*,*) sqrt(pth(ix^d)-bigdouble)
1125 write(*,*)
"Saving status at the previous time step"
1134 integer,
intent(in) :: ixI^L, ixO^L
1135 double precision,
intent(in) :: w(ixI^S, 1:nw)
1136 double precision,
intent(in) :: x(ixI^S, 1:ndim)
1137 double precision,
intent(out):: res(ixI^S)
1139 res(ixo^s) = w(ixo^s,
te_)
1144 integer,
intent(in) :: ixI^L, ixO^L
1145 double precision,
intent(in) :: w(ixI^S, 1:nw)
1146 double precision,
intent(in) :: x(ixI^S, 1:ndim)
1147 double precision,
intent(out):: res(ixI^S)
1148 double precision :: R(ixI^S)
1150 call ffhd_get_rfactor(w,x,ixi^l,ixo^l,r)
1151 res(ixo^s) = gamma_1 * w(ixo^s,
e_)/(w(ixo^s,
rho_)*r(ixo^s))
1156 integer,
intent(in) :: ixI^L, ixO^L
1157 double precision,
intent(in) :: w(ixI^S, 1:nw)
1158 double precision,
intent(in) :: x(ixI^S, 1:ndim)
1159 double precision,
intent(out):: res(ixI^S)
1161 double precision :: R(ixI^S)
1163 call ffhd_get_rfactor(w,x,ixi^l,ixo^l,r)
1165 res(ixo^s)=res(ixo^s)/(r(ixo^s)*w(ixo^s,
rho_))
1170 integer,
intent(in) :: ixi^
l, ixo^
l
1171 double precision,
intent(in) :: w(ixi^s,nw)
1172 double precision,
intent(in) :: x(ixi^s,1:
ndim)
1173 double precision,
intent(out) :: csound2(ixi^s)
1174 double precision :: rho(ixi^s)
1179 csound2(ixo^s)=
ffhd_gamma*csound2(ixo^s)/rho(ixo^s)
1188 integer,
intent(in) :: ixI^L, ixO^L, idim
1190 double precision,
intent(in) :: wC(ixI^S,nw)
1192 double precision,
intent(in) :: w(ixI^S,nw)
1193 double precision,
intent(in) :: x(ixI^S,1:ndim)
1194 double precision,
intent(out) :: f(ixI^S,nwflux)
1195 double precision :: ptotal(ixO^S)
1196 double precision :: tmp(ixI^S)
1197 integer :: idirmin, iw, idir, jdir, kdir
1198 double precision,
dimension(ixI^S) :: Te,tau,sigT
1203 ptotal(ixo^s)=w(ixo^s,
p_)
1209 f(ixo^s,
mom(1))=(wc(ixo^s,
mom(1))*w(ixo^s,
mom(1))+ptotal(ixo^s))*
block%B0(ixo^s,idim,idim)
1213 f(ixo^s,
e_)=w(ixo^s,
mom(1))*(wc(ixo^s,
e_)+ptotal(ixo^s))*
block%B0(ixo^s,idim,idim)
1215 f(ixo^s,
e_)=f(ixo^s,
e_)+w(ixo^s,
q_)*
block%B0(ixo^s,idim,idim)
1226 integer,
intent(in) :: ixI^L, ixO^L
1227 double precision,
intent(in) :: qdt,dtfactor
1228 double precision,
intent(in) :: wCT(ixI^S,1:nw),wCTprim(ixI^S,1:nw), x(ixI^S,1:ndim)
1229 double precision,
intent(inout) :: w(ixI^S,1:nw)
1230 logical,
intent(in) :: qsourcesplit
1231 logical,
intent(inout) :: active
1233 if (.not. qsourcesplit)
then
1235 call add_punitb(qdt,ixi^l,ixo^l,wct,w,x,wctprim)
1243 w,x,qsourcesplit,active,
rc_fl)
1258 if(.not.qsourcesplit)
then
1268 integer,
intent(in) :: ixI^L,ixO^L
1269 double precision,
intent(in) :: qdt
1270 double precision,
intent(in) :: wCT(ixI^S,1:nw),x(ixI^S,1:ndim)
1271 double precision,
intent(in) :: wCTprim(ixI^S,1:nw)
1272 double precision,
intent(inout) :: w(ixI^S,1:nw)
1274 integer :: idims,hxO^L
1275 double precision :: divb(ixI^S)
1280 hxo^l=ixo^l-
kr(idims,^
d);
1281 divb(ixo^s)=divb(ixo^s)+(
block%B0(ixo^s,idims,idims)-
block%B0(hxo^s,idims,idims))/
dxlevel(idims)
1286 w(ixo^s,
mom(1))=w(ixo^s,
mom(1))+qdt*wctprim(ixo^s,
p_)*divb(ixo^s)
1291 integer,
intent(in) :: ixi^
l, ixo^
l
1292 double precision,
intent(in) :: w(ixi^s,1:nw),x(ixi^s,1:
ndim)
1293 double precision,
intent(out) :: rho(ixi^s)
1295 rho(ixo^s) = w(ixo^s,
rho_)
1301 integer,
intent(in) :: ixI^L,ixO^L, ie
1302 double precision,
intent(inout) :: w(ixI^S,1:nw)
1303 double precision,
intent(in) :: x(ixI^S,1:ndim)
1304 character(len=*),
intent(in) :: subname
1306 logical :: flag(ixI^S,1:nw)
1307 double precision :: rho(ixI^S)
1310 where(w(ixo^s,ie)<small_e) flag(ixo^s,ie)=.true.
1311 if(any(flag(ixo^s,ie)))
then
1314 where(flag(ixo^s,ie)) w(ixo^s,ie)=small_e
1318 w(ixo^s,
e_)=w(ixo^s,
e_)*gamma_1
1320 w(ixo^s,
mom(1)) = w(ixo^s,
mom(1))/rho(ixo^s)
1329 integer,
intent(in) :: ixI^L, ixO^L
1330 double precision,
intent(in) :: wCT(ixI^S,1:nw), x(ixI^S,1:ndim)
1331 double precision,
intent(inout) :: w(ixI^S,1:nw)
1332 double precision :: iz_H(ixO^S),iz_He(ixO^S), pth(ixI^S)
1346 integer,
intent(in) :: ixI^L, ixO^L
1347 double precision,
intent(inout) :: dtnew
1348 double precision,
intent(in) :: dx^D
1349 double precision,
intent(in) :: w(ixI^S,1:nw)
1350 double precision,
intent(in) :: x(ixI^S,1:ndim)
1351 integer :: idirmin,idim
1352 double precision :: dxarr(ndim)
1353 double precision :: current(ixI^S,7-2*ndir:3),eta(ixI^S)
1484 integer,
intent(in) :: ixi^l, ixo^l
1485 double precision,
intent(in) :: w(ixi^s, nw)
1486 double precision :: ke(ixo^s)
1487 double precision,
intent(in),
optional :: inv_rho(ixo^s)
1489 if(
present(inv_rho))
then
1490 ke(ixo^s)=0.5d0*w(ixo^s,
mom(1))**2*inv_rho(ixo^s)
1492 ke(ixo^s)=0.5d0*w(ixo^s,
mom(1))**2/w(ixo^s,
rho_)
1499 integer,
intent(in) :: ixI^L, ixO^L
1500 double precision,
intent(in) :: w(ixI^S,1:nw)
1501 double precision,
intent(in) :: x(ixI^S,1:ndim)
1502 double precision,
intent(out):: Rfactor(ixI^S)
1503 double precision :: iz_H(ixO^S),iz_He(ixO^S)
1506 rfactor(ixo^s)=(1.d0+iz_h(ixo^s)+0.1d0*(1.d0+iz_he(ixo^s)*(1.d0+iz_he(ixo^s))))/(2.d0+3.d0*
he_abundance)
1511 integer,
intent(in) :: ixI^L, ixO^L
1512 double precision,
intent(in) :: w(ixI^S,1:nw)
1513 double precision,
intent(in) :: x(ixI^S,1:ndim)
1514 double precision,
intent(out):: Rfactor(ixI^S)
1521 integer,
intent(in) :: ixI^L, ixO^L
1522 double precision,
dimension(ixI^S,1:nw),
intent(in) :: w
1523 double precision,
dimension(ixI^S),
intent(in) :: Te
1524 double precision,
dimension(ixI^S),
intent(out) :: tau,sigT5
1526 double precision :: dxmin,taumin
1527 double precision,
dimension(ixI^S) :: sigT7,eint
1534 sigt7(ixo^s)=sigt5(ixo^s)*
block%wextra(ixo^s,
tcoff_)
1537 sigt7(ixo^s)=sigt5(ixo^s)*te(ixo^s)
1541 sigt7(ixo^s)=sigt5(ixo^s)*te(ixo^s)
1549 integer,
intent(in) :: ixI^L,ixO^L
1550 double precision,
intent(in) :: qdt
1551 double precision,
dimension(ixI^S,1:ndim),
intent(in) :: x
1552 double precision,
dimension(ixI^S,1:nw),
intent(in) :: wCT,wCTprim
1553 double precision,
dimension(ixI^S,1:nw),
intent(inout) :: w
1555 integer :: hxC^L,hxO^L,ixC^L,jxC^L,jxO^L,kxC^L
1556 double precision :: invdx
1557 double precision,
dimension(ixI^S) :: Te,tau,sigT,htc_qsrc,Tface
1558 double precision,
dimension(ixI^S) :: htc_esrc
1560 te(ixi^s)=wctprim(ixi^s,
p_)/wct(ixi^s,
rho_)
1561 call get_tau(ixi^l,ixo^l,wctprim,te,tau,sigt)
1566 ixcmin^
d=ixomin^
d-
kr(idims,^
d);ixcmax^
d=ixomax^
d;
1567 jxc^l=ixc^l+
kr(idims,^
d);
1568 kxc^l=jxc^l+
kr(idims,^
d);
1569 hxc^l=ixc^l-
kr(idims,^
d);
1570 hxo^l=ixo^l-
kr(idims,^
d);
1571 tface(ixc^s)=(7.d0*(te(ixc^s)+te(jxc^s))-(te(hxc^s)+te(kxc^s)))/12.d0
1572 htc_qsrc(ixo^s)=htc_qsrc(ixo^s)+sigt(ixo^s)*
block%B0(ixo^s,idims,0)*(tface(ixo^s)-tface(hxo^s))*invdx
1574 htc_qsrc(ixo^s)=(htc_qsrc(ixo^s)+wct(ixo^s,
q_))/tau(ixo^s)
1575 w(ixo^s,
q_)=w(ixo^s,
q_)-qdt*htc_qsrc(ixo^s)
subroutine, public mpistop(message)
Exit MPI-AMRVAC with an error message.
Module for physical and numeric constants.
double precision, parameter bigdouble
A very large real number.
subroutine add_convert_method(phys_convert_vars, nwc, dataset_names, file_suffix)
Frozen-field hydrodynamics module.
integer, public, protected te_
Indices of temperature.
integer, public, protected ffhd_trac_type
Which TRAC method is used.
subroutine ffhd_get_cs2max(w, x, ixIL, ixOL, cs2max)
double precision, public hypertc_kappa
The thermal conductivity kappa in hyperbolic thermal conduction.
integer, public, protected e_
Index of the energy density (-1 if not present)
subroutine ffhd_handle_small_values_origin(primitive, w, x, ixIL, ixOL, subname)
double precision, public ffhd_gamma
The adiabatic index.
double precision function ffhd_get_tc_dt_ffhd(w, ixIL, ixOL, dxD, x)
logical, public, protected eq_state_units
subroutine ffhd_update_temperature(ixIL, ixOL, wCT, w, x)
subroutine ffhd_get_temperature_from_eint(w, x, ixIL, ixOL, res)
subroutine ffhd_get_dt(w, ixIL, ixOL, dtnew, dxD, x)
double precision, public ffhd_adiab
The adiabatic constant.
procedure(sub_get_pthermal), pointer, public ffhd_get_temperature
subroutine ffhd_get_temperature_from_etot(w, x, ixIL, ixOL, res)
subroutine rfactor_from_constant_ionization(w, x, ixIL, ixOL, Rfactor)
logical, public, protected ffhd_hyperbolic_thermal_conduction
Whether hyperbolic type thermal conduction is used.
subroutine, public ffhd_get_v_idim(w, x, ixIL, ixOL, idim, v)
type(rc_fluid), allocatable, public rc_fl
type of fluid for radiative cooling
subroutine ffhd_get_tcutoff(ixIL, ixOL, w, x, Tco_local, Tmax_local)
subroutine tc_params_read_ffhd(fl)
integer, public, protected rho_
Index of the density (in the w array)
integer, public, protected tcoff_
Index of the cutoff temperature for the TRAC method.
procedure(sub_get_pthermal), pointer, public ffhd_get_pthermal
subroutine ffhd_check_params
logical, public, protected ffhd_partial_ionization
Whether plasma is partially ionized.
procedure(sub_convert), pointer, public ffhd_to_conserved
integer, dimension(:), allocatable, public, protected mom
Indices of the momentum density.
subroutine ffhd_te_images
subroutine ffhd_to_conserved_origin(ixIL, ixOL, w, x)
double precision, public, protected h_ion_fr
Ionization fraction of H H_ion_fr = H+/(H+ + H)
procedure(fun_kin_en), pointer, public ffhd_kin_en
subroutine, public ffhd_phys_init()
subroutine ffhd_add_source(qdt, dtfactor, ixIL, ixOL, wCT, wCTprim, w, x, qsourcesplit, active)
procedure(sub_get_v), pointer, public ffhd_get_v
subroutine ffhd_get_a2max(w, x, ixIL, ixOL, a2max)
subroutine ffhd_write_info(fh)
Write this module's parameters to a snapsoht.
subroutine ffhd_to_primitive_origin(ixIL, ixOL, w, x)
subroutine ffhd_get_cbounds(wLC, wRC, wLp, wRp, x, ixIL, ixOL, idim, Hspeed, cmax, cmin)
logical, public, protected ffhd_energy
Whether an energy equation is used.
double precision, public, protected rr
type(tc_fluid), allocatable, public tc_fl
type of fluid for thermal conduction
subroutine ffhd_get_flux(wC, w, x, ixIL, ixOL, idim, f)
subroutine ffhd_physical_units()
subroutine, public ffhd_e_to_ei(ixIL, ixOL, w, x)
subroutine add_punitb(qdt, ixIL, ixOL, wCT, w, x, wCTprim)
subroutine ffhd_get_csound(w, x, ixIL, ixOL, idim, csound)
subroutine rfactor_from_temperature_ionization(w, x, ixIL, ixOL, Rfactor)
type(te_fluid), allocatable, public te_fl_ffhd
type of fluid for thermal emission synthesis
double precision, public, protected he_abundance
Helium abundance over Hydrogen.
subroutine ffhd_get_v_origin(w, x, ixIL, ixOL, v)
logical, public, protected ffhd_viscosity
Whether viscosity is added.
logical, public, protected ffhd_radiative_cooling
Whether radiative cooling is added.
subroutine ffhd_get_temperature_from_te(w, x, ixIL, ixOL, res)
subroutine rc_params_read(fl)
subroutine ffhd_handle_small_ei(w, x, ixIL, ixOL, ie, subname)
integer, public, protected q_
procedure(sub_convert), pointer, public ffhd_to_primitive
integer, public, protected tweight_
subroutine ffhd_get_cmax_origin(w, x, ixIL, ixOL, idim, cmax)
double precision, public, protected he_ion_fr2
Ratio of number He2+ / number He+ + He2+ He_ion_fr2 = He2+/(He2+ + He+)
logical, public, protected ffhd_trac
Whether TRAC method is used.
subroutine get_tau(ixIL, ixOL, w, Te, tau, sigT5)
subroutine ffhd_check_w_origin(primitive, ixIL, ixOL, w, flag)
subroutine ffhd_get_pthermal_origin(w, x, ixIL, ixOL, pth)
subroutine, public ffhd_ei_to_e(ixIL, ixOL, w, x)
subroutine ffhd_tc_handle_small_e(w, x, ixIL, ixOL, step)
logical, public, protected ffhd_thermal_conduction
Whether thermal conduction is used.
logical, public, protected ffhd_gravity
Whether gravity is added.
subroutine add_hypertc_source(qdt, ixIL, ixOL, wCT, w, x, wCTprim)
integer, public, protected p_
Index of the gas pressure (-1 if not present) should equal e_.
subroutine ffhd_get_pthermal_iso(w, x, ixIL, ixOL, pth)
subroutine ffhd_get_csound_prim(w, x, ixIL, ixOL, idim, csound)
Calculate fast magnetosonic wave speed.
double precision function, dimension(ixo^s) ffhd_kin_en_origin(w, ixIL, ixOL, inv_rho)
double precision, public, protected ffhd_trac_mask
Height of the mask used in the TRAC method.
double precision, public, protected he_ion_fr
Ionization fraction of He He_ion_fr = (He2+ + He+)/(He2+ + He+ + He)
subroutine, public ffhd_get_csound2(w, x, ixIL, ixOL, csound2)
subroutine, public ffhd_get_rho(w, x, ixIL, ixOL, rho)
integer, public, protected ffhd_trac_finegrid
Distance between two adjacent traced magnetic field lines (in finest cell size)
subroutine ffhd_sts_set_source_tc_ffhd(ixIL, ixOL, w, x, wres, fix_conserve_at_step, my_dt, igrid, nflux)
Module for flux conservation near refinement boundaries.
Module with geometry-related routines (e.g., divergence, curl)
subroutine gradient(q, ixIL, ixOL, idir, gradq)
Calculate gradient of a scalar q within ixL in direction idir.
subroutine divvector(qvec, ixIL, ixOL, divq, fourthorder, sixthorder)
Calculate divergence of a vector qvec within ixL.
This module contains definitions of global parameters and variables and some generic functions/subrou...
type(state), pointer block
Block pointer for using one block and its previous state.
double precision small_pressure
double precision unit_time
Physical scaling factor for time.
double precision unit_density
Physical scaling factor for density.
integer, parameter unitpar
file handle for IO
double precision unit_mass
Physical scaling factor for mass.
integer, dimension(3, 3) kr
Kronecker delta tensor.
double precision phys_trac_mask
double precision unit_numberdensity
Physical scaling factor for number density.
character(len=std_len) convert_type
Which format to use when converting.
double precision unit_pressure
Physical scaling factor for pressure.
integer, parameter ndim
Number of spatial dimensions for grid variables.
double precision unit_length
Physical scaling factor for length.
character(len=std_len), dimension(:), allocatable par_files
Which par files are used as input.
integer mype
The rank of the current MPI task.
integer, dimension(:), allocatable, parameter d
integer ndir
Number of spatial dimensions (components) for vector variables.
double precision unit_velocity
Physical scaling factor for velocity.
logical b0field
split magnetic field as background B0 field
logical need_global_cs2max
global value for csound speed
double precision unit_temperature
Physical scaling factor for temperature.
logical si_unit
Use SI units (.true.) or use cgs units (.false.)
double precision, dimension(:,:), allocatable dx
logical phys_trac
Use TRAC (Johnston 2019 ApJL, 873, L22) for MHD or 1D HD.
double precision cs2max_global
global largest cs2 for hyperbolic thermal conduction
logical slab_uniform
uniform Cartesian geometry or not (stretched Cartesian)
double precision small_density
integer boundspeed
bound (left/min and right.max) speed of Riemann fan
integer phys_trac_finegrid
integer, parameter unitconvert
double precision, dimension(ndim) dxlevel
Module for including gravity in (magneto)hydrodynamics simulations.
subroutine gravity_get_dt(w, ixIL, ixOL, dtnew, dxD, x)
subroutine gravity_add_source(qdt, ixIL, ixOL, wCT, wCTprim, w, x, energy, rhov, qsourcesplit, active)
w[iw]=w[iw]+qdt*S[wCT,qtC,x] where S is the source based on wCT within ixO
subroutine gravity_init()
Initialize the module.
module ionization degree - get ionization degree for given temperature
subroutine ionization_degree_init()
subroutine ionization_degree_from_temperature(ixIL, ixOL, Te, iz_H, iz_He)
Module containing all the particle routines.
This module defines the procedures of a physics module. It contains function pointers for the various...
module radiative cooling – add optically thin radiative cooling for HD and MHD
subroutine radiative_cooling_init(fl, read_params)
subroutine cooling_get_dt(w, ixIL, ixOL, dtnew, dxD, x, fl)
subroutine radiative_cooling_init_params(phys_gamma, He_abund)
Radiative cooling initialization.
subroutine radiative_cooling_add_source(qdt, ixIL, ixOL, wCT, wCTprim, w, x, qsourcesplit, active, fl)
Module for handling problematic values in simulations, such as negative pressures.
logical, public trace_small_values
trace small values in the source file using traceback flag of compiler
subroutine, public small_values_average(ixIL, ixOL, w, x, w_flag, windex)
logical, dimension(:), allocatable, public small_values_fix_iw
Whether to apply small value fixes to certain variables.
subroutine, public small_values_error(wprim, x, ixIL, ixOL, w_flag, subname)
character(len=20), public small_values_method
How to handle small values.
Generic supertimestepping method 1) in amrvac.par in sts_list set the following parameters which have...
subroutine, public add_sts_method(sts_getdt, sts_set_sources, startVar, nflux, startwbc, nwbc, evolve_B)
subroutine which added programatically a term to be calculated using STS Params: sts_getdt function c...
subroutine, public set_conversion_methods_to_head(sts_before_first_cycle, sts_after_last_cycle)
Set the hooks called before the first cycle and after the last cycle in the STS update This method sh...
subroutine, public set_error_handling_to_head(sts_error_handling)
Set the hook of error handling in the STS update. This method is called before updating the BC....
subroutine, public sts_init()
Initialize sts module.
Thermal conduction for HD and MHD or RHD and RMHD or twofl (plasma-neutral) module Adaptation of mod_...
subroutine, public sts_set_source_tc_ffhd(ixIL, ixOL, w, x, wres, fix_conserve_at_step, my_dt, igrid, nflux, fl)
anisotropic thermal conduction with slope limited symmetric scheme Sharma 2007 Journal of Computation...
subroutine tc_init_params(phys_gamma)
double precision function, public get_tc_dt_ffhd(w, ixIL, ixOL, dxD, x, fl)
Get the explicut timestep for the TC (ffhd implementation)
subroutine, public tc_get_ffhd_params(fl, read_ffhd_params)
subroutine get_euv_image(qunit, fl)
subroutine get_sxr_image(qunit, fl)
subroutine get_euv_spectrum(qunit, fl)
subroutine get_whitelight_image(qunit, fl)
Module with all the methods that users can customize in AMRVAC.
procedure(rfactor), pointer usr_rfactor
procedure(set_equi_vars), pointer usr_set_equi_vars
The module add viscous source terms and check time step.
subroutine viscosity_get_dt(w, ixIL, ixOL, dtnew, dxD, x)
subroutine viscosity_add_source(qdt, ixIL, ixOL, wCT, w, x, energy, qsourcesplit, active)
subroutine viscosity_init(phys_wider_stencil, phys_req_diagonal)
Initialize the module.