MPI-AMRVAC 3.1
The MPI - Adaptive Mesh Refinement - Versatile Advection Code (development version)
Loading...
Searching...
No Matches
mod_ffhd_phys.t
Go to the documentation of this file.
1!> Frozen-field hydrodynamics module
3
4#include "amrvac.h"
5
6 use mod_global_parameters, only: std_len, const_c
10 use mod_physics
11 use mod_comm_lib, only: mpistop
12
13 implicit none
14 private
15
16 !> Whether an energy equation is used
17 logical, public, protected :: ffhd_energy = .true.
18
19 !> Whether thermal conduction is used
20 logical, public, protected :: ffhd_thermal_conduction = .false.
21 !> Whether hyperbolic type thermal conduction is used
22 logical, public, protected :: ffhd_hyperbolic_thermal_conduction = .false.
23 !> type of fluid for thermal conduction
24 type(tc_fluid), public, allocatable :: tc_fl
25 !> type of fluid for thermal emission synthesis
26 type(te_fluid), public, allocatable :: te_fl_ffhd
27
28 !> Whether radiative cooling is added
29 logical, public, protected :: ffhd_radiative_cooling = .false.
30 !> type of fluid for radiative cooling
31 type(rc_fluid), public, allocatable :: rc_fl
32
33 !> Whether viscosity is added
34 logical, public, protected :: ffhd_viscosity = .false.
35
36 !> Whether gravity is added
37 logical, public, protected :: ffhd_gravity = .false.
38
39 !> Whether TRAC method is used
40 logical, public, protected :: ffhd_trac = .false.
41
42 !> Which TRAC method is used
43 integer, public, protected :: ffhd_trac_type=1
44
45 !> Height of the mask used in the TRAC method
46 double precision, public, protected :: ffhd_trac_mask = 0.d0
47
48 !> Distance between two adjacent traced magnetic field lines (in finest cell size)
49 integer, public, protected :: ffhd_trac_finegrid=4
50
51 !> Whether plasma is partially ionized
52 logical, public, protected :: ffhd_partial_ionization = .false.
53
54 !> Index of the density (in the w array)
55 integer, public, protected :: rho_
56
57 !> Indices of the momentum density
58 integer, allocatable, public, protected :: mom(:)
59
60 !> Index of the energy density (-1 if not present)
61 integer, public, protected :: e_
62
63 !> Index of the gas pressure (-1 if not present) should equal e_
64 integer, public, protected :: p_
65
66 !> Indices of temperature
67 integer, public, protected :: te_
68
69 !> Index of the cutoff temperature for the TRAC method
70 integer, public, protected :: tcoff_
71 integer, public, protected :: tweight_
72 integer, public, protected :: q_
73
74 !> The adiabatic index
75 double precision, public :: ffhd_gamma = 5.d0/3.0d0
76
77 !> The adiabatic constant
78 double precision, public :: ffhd_adiab = 1.0d0
79
80 !> The small_est allowed energy
81 double precision, protected :: small_e
82
83 !> The thermal conductivity kappa in hyperbolic thermal conduction
84 double precision, public :: hypertc_kappa
85
86 !> Helium abundance over Hydrogen
87 double precision, public, protected :: he_abundance=0.1d0
88 !> Ionization fraction of H
89 !> H_ion_fr = H+/(H+ + H)
90 double precision, public, protected :: h_ion_fr=1d0
91 !> Ionization fraction of He
92 !> He_ion_fr = (He2+ + He+)/(He2+ + He+ + He)
93 double precision, public, protected :: he_ion_fr=1d0
94 !> Ratio of number He2+ / number He+ + He2+
95 !> He_ion_fr2 = He2+/(He2+ + He+)
96 double precision, public, protected :: he_ion_fr2=1d0
97 ! used for eq of state when it is not defined by units,
98 ! the units do not contain terms related to ionization fraction
99 ! and it is p = RR * rho * T
100 double precision, public, protected :: rr=1d0
101 ! remove the below flag and assume default value = .false.
102 ! when eq state properly implemented everywhere
103 ! and not anymore through units
104 logical, public, protected :: eq_state_units = .true.
105
106 !> gamma minus one and its inverse
107 double precision :: gamma_1, inv_gamma_1
108
109 !define the subroutine interface for the ambipolar mask
110 abstract interface
111
112 function fun_kin_en(w, ixI^L, ixO^L, inv_rho) result(ke)
113 use mod_global_parameters, only: nw, ndim,block
114 integer, intent(in) :: ixi^l, ixo^l
115 double precision, intent(in) :: w(ixi^s, nw)
116 double precision :: ke(ixo^s)
117 double precision, intent(in), optional :: inv_rho(ixo^s)
118 end function fun_kin_en
119
120 end interface
121
122 procedure(sub_convert), pointer :: ffhd_to_primitive => null()
123 procedure(sub_convert), pointer :: ffhd_to_conserved => null()
124 procedure(sub_small_values), pointer :: ffhd_handle_small_values => null()
125 procedure(sub_get_pthermal), pointer :: ffhd_get_pthermal => null()
126 procedure(sub_get_pthermal), pointer :: ffhd_get_rfactor => null()
127 procedure(sub_get_pthermal), pointer :: ffhd_get_temperature => null()
128 procedure(sub_get_v), pointer :: ffhd_get_v => null()
129 procedure(fun_kin_en), pointer :: ffhd_kin_en => null()
130 ! Public methods
131 public :: ffhd_phys_init
132 public :: ffhd_kin_en
133 public :: ffhd_get_pthermal
134 public :: ffhd_get_temperature
135 public :: ffhd_get_v
136 public :: ffhd_get_rho
137 public :: ffhd_get_v_idim
138 public :: ffhd_to_conserved
139 public :: ffhd_to_primitive
140 public :: ffhd_get_csound2
141 public :: ffhd_e_to_ei
142 public :: ffhd_ei_to_e
143
144contains
145
146 subroutine ffhd_read_params(files)
148 use mod_particles, only: particles_eta, particles_etah
149 character(len=*), intent(in) :: files(:)
150 integer :: n
151
152 namelist /ffhd_list/ ffhd_energy, ffhd_gamma, ffhd_adiab,&
156
157 do n = 1, size(files)
158 open(unitpar, file=trim(files(n)), status="old")
159 read(unitpar, ffhd_list, end=111)
160111 close(unitpar)
161 end do
162 end subroutine ffhd_read_params
163
164 !> Write this module's parameters to a snapsoht
165 subroutine ffhd_write_info(fh)
167 integer, intent(in) :: fh
168 integer, parameter :: n_par = 1
169 double precision :: values(n_par)
170 character(len=name_len) :: names(n_par)
171 integer, dimension(MPI_STATUS_SIZE) :: st
172 integer :: er
173
174 call mpi_file_write(fh, n_par, 1, mpi_integer, st, er)
175
176 names(1) = "gamma"
177 values(1) = ffhd_gamma
178 call mpi_file_write(fh, values, n_par, mpi_double_precision, st, er)
179 call mpi_file_write(fh, names, n_par * name_len, mpi_character, st, er)
180 end subroutine ffhd_write_info
181
182 subroutine ffhd_phys_init()
187 use mod_gravity, only: gravity_init
192 integer :: itr, idir
193
194 call ffhd_read_params(par_files)
195
196 if(.not. ffhd_energy) then
199 if(mype==0) write(*,*) 'WARNING: set ffhd_thermal_conduction=F when ffhd_energy=F'
200 end if
203 if(mype==0) write(*,*) 'WARNING: set ffhd_hyperbolic_thermal_conduction=F when ffhd_energy=F'
204 end if
207 if(mype==0) write(*,*) 'WARNING: set ffhd_radiative_cooling=F when ffhd_energy=F'
208 end if
209 if(ffhd_trac) then
210 ffhd_trac=.false.
211 if(mype==0) write(*,*) 'WARNING: set ffhd_trac=F when ffhd_energy=F'
212 end if
215 if(mype==0) write(*,*) 'WARNING: set ffhd_partial_ionization=F when ffhd_energy=F'
216 end if
217 end if
218 if(.not.eq_state_units) then
221 if(mype==0) write(*,*) 'WARNING: set ffhd_partial_ionization=F when eq_state_units=F'
222 end if
223 end if
224
227 if(mype==0) write(*,*) 'WARNING: turn off parabolic TC when using hyperbolic TC'
228 end if
229
230 physics_type = "ffhd"
231 phys_energy=ffhd_energy
232 phys_internal_e=.false.
235 phys_partial_ionization=ffhd_partial_ionization
236
237 phys_gamma = ffhd_gamma
238 phys_total_energy=ffhd_energy
240
241 {^ifoned
242 if(ffhd_trac .and. ffhd_trac_type .gt. 2) then
244 if(mype==0) write(*,*) 'WARNING: reset ffhd_trac_type=1 for 1D simulation'
245 end if
246 }
247 if(ffhd_trac .and. ffhd_trac_type .le. 4) then
248 ffhd_trac_mask=bigdouble
249 if(mype==0) write(*,*) 'WARNING: set ffhd_trac_mask==bigdouble for global TRAC method'
250 end if
252
253 allocate(start_indices(number_species),stop_indices(number_species))
254 ! set the index of the first flux variable for species 1
255 start_indices(1)=1
256 ! Determine flux variables
257 rho_ = var_set_rho()
258
259 allocate(mom(1))
260 mom(:) = var_set_momentum(1)
261
262 ! Set index of energy variable
263 if(ffhd_energy) then
264 e_ = var_set_energy() ! energy density
265 p_ = e_ ! gas pressure
266 else
267 e_ = -1
268 p_ = -1
269 end if
270
272 q_ = var_set_q()
273 need_global_cs2max=.true.
274 else
275 q_=-1
276 end if
277
278 ! set number of variables which need update ghostcells
279 nwgc=nwflux
280
281 ! set the index of the last flux variable for species 1
282 stop_indices(1)=nwflux
283
284 ! set temperature as an auxiliary variable to get ionization degree
286 te_ = var_set_auxvar('Te','Te')
287 else
288 te_ = -1
289 end if
290
291 ! set cutoff temperature when using the TRAC method, as well as an auxiliary weight
292 tweight_ = -1
293 if(ffhd_trac) then
294 tcoff_ = var_set_wextra()
295 iw_tcoff=tcoff_
296 if(ffhd_trac_type .ge. 3) then
297 tweight_ = var_set_wextra()
298 iw_tweight=tweight_
299 end if
300 else
301 tcoff_ = -1
302 end if
303
304 nvector = 0 ! No. vector vars
305
306 ! Check whether custom flux types have been defined
307 if(.not. allocated(flux_type)) then
308 allocate(flux_type(ndir, nwflux))
309 flux_type = flux_default
310 else if(any(shape(flux_type) /= [ndir, nwflux])) then
311 call mpistop("phys_check error: flux_type has wrong shape")
312 end if
313
314 phys_get_dt => ffhd_get_dt
315 phys_get_cmax => ffhd_get_cmax_origin
316 phys_get_a2max => ffhd_get_a2max
317 phys_get_cs2max => ffhd_get_cs2max
318 phys_get_tcutoff => ffhd_get_tcutoff
319 phys_get_cbounds => ffhd_get_cbounds
320 phys_to_primitive => ffhd_to_primitive_origin
321 ffhd_to_primitive => ffhd_to_primitive_origin
322 phys_to_conserved => ffhd_to_conserved_origin
323 ffhd_to_conserved => ffhd_to_conserved_origin
324 phys_get_flux => ffhd_get_flux
325 phys_get_v => ffhd_get_v_origin
326 ffhd_get_v => ffhd_get_v_origin
327 phys_get_rho => ffhd_get_rho
328 ffhd_kin_en => ffhd_kin_en_origin
329 !> need to check source geom here
330 !phys_add_source_geom => ffhd_add_source_geom
331 phys_add_source => ffhd_add_source
332 phys_check_params => ffhd_check_params
333 phys_write_info => ffhd_write_info
334 phys_handle_small_values => ffhd_handle_small_values_origin
335 ffhd_handle_small_values => ffhd_handle_small_values_origin
336 phys_check_w => ffhd_check_w_origin
337
338 if(.not.ffhd_energy) then
339 phys_get_pthermal => ffhd_get_pthermal_iso
340 ffhd_get_pthermal => ffhd_get_pthermal_iso
341 else
342 phys_get_pthermal => ffhd_get_pthermal_origin
343 ffhd_get_pthermal => ffhd_get_pthermal_origin
344 end if
345
346 ! choose Rfactor in ideal gas law
348 ffhd_get_rfactor=>rfactor_from_temperature_ionization
349 phys_update_temperature => ffhd_update_temperature
350 else if(associated(usr_rfactor)) then
351 ffhd_get_rfactor=>usr_rfactor
352 else
353 ffhd_get_rfactor=>rfactor_from_constant_ionization
354 end if
355
357 ffhd_get_temperature => ffhd_get_temperature_from_te
358 else
359 ffhd_get_temperature => ffhd_get_temperature_from_etot
360 end if
361
362 ! derive units from basic units
363 call ffhd_physical_units()
364
367 end if
368 if(.not. ffhd_energy .and. ffhd_thermal_conduction) then
369 call mpistop("thermal conduction needs ffhd_energy=T")
370 end if
372 call mpistop("hyperbolic thermal conduction needs ffhd_energy=T")
373 end if
374 if(.not. ffhd_energy .and. ffhd_radiative_cooling) then
375 call mpistop("radiative cooling needs ffhd_energy=T")
376 end if
377
378 ! initialize thermal conduction module
380 call sts_init()
382
383 allocate(tc_fl)
384 call tc_get_hd_params(tc_fl,tc_params_read_ffhd)
385 call add_sts_method(ffhd_get_tc_dt_ffhd,ffhd_sts_set_source_tc_ffhd,e_,1,e_,1,.false.)
386 tc_fl%get_temperature_from_conserved => ffhd_get_temperature_from_etot
387 tc_fl%get_temperature_from_eint => ffhd_get_temperature_from_eint
389 call set_error_handling_to_head(ffhd_tc_handle_small_e)
390 tc_fl%get_rho => ffhd_get_rho
391 tc_fl%e_ = e_
392 tc_fl%Tcoff_ = tcoff_
393 end if
394
395 ! Initialize radiative cooling module
398 allocate(rc_fl)
399 call radiative_cooling_init(rc_fl,rc_params_read)
400 rc_fl%get_rho => ffhd_get_rho
401 rc_fl%get_pthermal => ffhd_get_pthermal
402 rc_fl%get_var_Rfactor => ffhd_get_rfactor
403 rc_fl%e_ = e_
404 rc_fl%Tcoff_ = tcoff_
405 rc_fl%has_equi = .false.
406 end if
407 allocate(te_fl_ffhd)
408 te_fl_ffhd%get_rho=> ffhd_get_rho
409 te_fl_ffhd%get_pthermal=> ffhd_get_pthermal
410 te_fl_ffhd%get_var_Rfactor => ffhd_get_rfactor
411{^ifthreed
412 phys_te_images => ffhd_te_images
413}
414 ! Initialize viscosity module
415 if(ffhd_viscosity) call viscosity_init(phys_wider_stencil)
416
417 ! Initialize gravity module
418 if(ffhd_gravity) then
419 call gravity_init()
420 end if
421
422 ! initialize ionization degree table
424 end subroutine ffhd_phys_init
425
426{^ifthreed
427 subroutine ffhd_te_images
430
431 select case(convert_type)
432 case('EIvtiCCmpi','EIvtuCCmpi')
434 case('ESvtiCCmpi','ESvtuCCmpi')
436 case('SIvtiCCmpi','SIvtuCCmpi')
438 case('WIvtiCCmpi','WIvtuCCmpi')
440 case default
441 call mpistop("Error in synthesize emission: Unknown convert_type")
442 end select
443 end subroutine ffhd_te_images
444}
445
446 subroutine ffhd_sts_set_source_tc_ffhd(ixI^L,ixO^L,w,x,wres,fix_conserve_at_step,my_dt,igrid,nflux)
450 integer, intent(in) :: ixi^l, ixo^l, igrid, nflux
451 double precision, intent(in) :: x(ixi^s,1:ndim)
452 double precision, intent(inout) :: wres(ixi^s,1:nw), w(ixi^s,1:nw)
453 double precision, intent(in) :: my_dt
454 logical, intent(in) :: fix_conserve_at_step
455 call sts_set_source_tc_mhd(ixi^l,ixo^l,w,x,wres,fix_conserve_at_step,my_dt,igrid,nflux,tc_fl)
456 end subroutine ffhd_sts_set_source_tc_ffhd
457
458 function ffhd_get_tc_dt_ffhd(w,ixI^L,ixO^L,dx^D,x) result(dtnew)
459 !Check diffusion time limit dt < dx_i**2/((gamma-1)*tc_k_para_i/rho)
460 !where tc_k_para_i=tc_k_para*B_i**2/B**2
461 !and T=p/rho
464
465 integer, intent(in) :: ixi^l, ixo^l
466 double precision, intent(in) :: dx^d, x(ixi^s,1:ndim)
467 double precision, intent(in) :: w(ixi^s,1:nw)
468 double precision :: dtnew
469
470 dtnew=get_tc_dt_mhd(w,ixi^l,ixo^l,dx^d,x,tc_fl)
471 end function ffhd_get_tc_dt_ffhd
472
473 subroutine ffhd_tc_handle_small_e(w, x, ixI^L, ixO^L, step)
475
476 integer, intent(in) :: ixi^l,ixo^l
477 double precision, intent(inout) :: w(ixi^s,1:nw)
478 double precision, intent(in) :: x(ixi^s,1:ndim)
479 integer, intent(in) :: step
480 character(len=140) :: error_msg
481
482 write(error_msg,"(a,i3)") "Thermal conduction step ", step
483 call ffhd_handle_small_ei(w,x,ixi^l,ixo^l,e_,error_msg)
484 end subroutine ffhd_tc_handle_small_e
485
486 subroutine tc_params_read_ffhd(fl)
488 type(tc_fluid), intent(inout) :: fl
489 integer :: n
490 ! list parameters
491 logical :: tc_saturate=.false.
492 double precision :: tc_k_para=0d0
493 character(len=std_len) :: tc_slope_limiter="MC"
494
495 namelist /tc_list/ tc_saturate, tc_slope_limiter, tc_k_para
496
497 do n = 1, size(par_files)
498 open(unitpar, file=trim(par_files(n)), status="old")
499 read(unitpar, tc_list, end=111)
500111 close(unitpar)
501 end do
502
503 fl%tc_saturate = tc_saturate
504 fl%tc_k_para = tc_k_para
505 select case(tc_slope_limiter)
506 case ('no','none')
507 fl%tc_slope_limiter = 0
508 case ('MC')
509 ! montonized central limiter Woodward and Collela limiter (eq.3.51h), a factor of 2 is pulled out
510 fl%tc_slope_limiter = 1
511 case('minmod')
512 ! minmod limiter
513 fl%tc_slope_limiter = 2
514 case ('superbee')
515 ! Roes superbee limiter (eq.3.51i)
516 fl%tc_slope_limiter = 3
517 case ('koren')
518 ! Barry Koren Right variant
519 fl%tc_slope_limiter = 4
520 case default
521 call mpistop("Unknown tc_slope_limiter, choose MC, minmod")
522 end select
523 end subroutine tc_params_read_ffhd
524
525 subroutine rc_params_read(fl)
527 use mod_constants, only: bigdouble
528 type(rc_fluid), intent(inout) :: fl
529 integer :: n
530 integer :: ncool = 4000
531 double precision :: cfrac=0.1d0
532
533 !> Name of cooling curve
534 character(len=std_len) :: coolcurve='JCcorona'
535
536 !> Name of cooling method
537 character(len=std_len) :: coolmethod='exact'
538
539 !> Fixed temperature not lower than tlow
540 logical :: tfix=.false.
541
542 !> Lower limit of temperature
543 double precision :: tlow=bigdouble
544
545 !> Add cooling source in a split way (.true.) or un-split way (.false.)
546 logical :: rc_split=.false.
547 logical :: rad_cut=.false.
548 double precision :: rad_cut_hgt=0.5d0
549 double precision :: rad_cut_dey=0.15d0
550
551 namelist /rc_list/ coolcurve, coolmethod, ncool, cfrac, tlow, tfix, rc_split, rad_cut, rad_cut_hgt, rad_cut_dey
552
553 do n = 1, size(par_files)
554 open(unitpar, file=trim(par_files(n)), status="old")
555 read(unitpar, rc_list, end=111)
556111 close(unitpar)
557 end do
558
559 fl%ncool=ncool
560 fl%coolcurve=coolcurve
561 fl%coolmethod=coolmethod
562 fl%tlow=tlow
563 fl%Tfix=tfix
564 fl%rc_split=rc_split
565 fl%cfrac=cfrac
566 fl%rad_cut=rad_cut
567 fl%rad_cut_hgt=rad_cut_hgt
568 fl%rad_cut_dey=rad_cut_dey
569 end subroutine rc_params_read
570
571 subroutine ffhd_check_params
575
576 gamma_1=ffhd_gamma-1.d0
577 if (.not. ffhd_energy) then
578 if (ffhd_gamma <= 0.0d0) call mpistop ("Error: ffhd_gamma <= 0")
579 if (ffhd_adiab < 0.0d0) call mpistop ("Error: ffhd_adiab < 0")
581 else
582 if (ffhd_gamma <= 0.0d0 .or. ffhd_gamma == 1.0d0) &
583 call mpistop ("Error: ffhd_gamma <= 0 or ffhd_gamma == 1")
584 inv_gamma_1=1.d0/gamma_1
585 small_e = small_pressure * inv_gamma_1
586 end if
587
588 if (number_equi_vars > 0 .and. .not. associated(usr_set_equi_vars)) then
589 call mpistop("usr_set_equi_vars has to be implemented in the user file")
590 end if
591 end subroutine ffhd_check_params
592
593 subroutine ffhd_physical_units()
595 double precision :: mp,kb
596 double precision :: a,b
597
598 if(si_unit) then
599 mp=mp_si
600 kb=kb_si
601 else
602 mp=mp_cgs
603 kb=kb_cgs
604 end if
605 if(eq_state_units) then
606 a = 1d0 + 4d0 * he_abundance
608 b = 2+.3d0
609 else
610 b = 1d0 + h_ion_fr + he_abundance*(he_ion_fr*(he_ion_fr2 + 1d0)+1d0)
611 end if
612 rr = 1d0
613 else
614 a = 1d0
615 b = 1d0
616 rr = (1d0 + h_ion_fr + he_abundance*(he_ion_fr*(he_ion_fr2 + 1d0)+1d0))/(1d0 + 4d0 * he_abundance)
617 end if
618 if(unit_density/=1.d0) then
620 else
622 end if
623 if(unit_velocity/=1.d0) then
626 else if(unit_pressure/=1.d0) then
629 else
632 end if
633 if(unit_time/=1.d0) then
635 else
637 end if
639 end subroutine ffhd_physical_units
640
641 subroutine ffhd_check_w_origin(primitive,ixI^L,ixO^L,w,flag)
643 logical, intent(in) :: primitive
644 integer, intent(in) :: ixi^l, ixo^l
645 double precision, intent(in) :: w(ixi^s,nw)
646 double precision :: tmp(ixi^s)
647 logical, intent(inout) :: flag(ixi^s,1:nw)
648
649 flag=.false.
650 where(w(ixo^s,rho_) < small_density) flag(ixo^s,rho_) = .true.
651
652 if(ffhd_energy) then
653 if(primitive) then
654 where(w(ixo^s,e_) < small_pressure) flag(ixo^s,e_) = .true.
655 else
656 tmp(ixo^s)=w(ixo^s,e_)-ffhd_kin_en(w,ixi^l,ixo^l)
657 where(tmp(ixo^s) < small_e) flag(ixo^s,e_) = .true.
658 end if
659 end if
660 end subroutine ffhd_check_w_origin
661
662 subroutine ffhd_to_conserved_origin(ixI^L,ixO^L,w,x)
664 integer, intent(in) :: ixi^l, ixo^l
665 double precision, intent(inout) :: w(ixi^s, nw)
666 double precision, intent(in) :: x(ixi^s, 1:ndim)
667 double precision :: inv_gamma2(ixo^s)
668 integer :: idir
669
670 if(ffhd_energy) then
671 w(ixo^s,e_)=w(ixo^s,p_)*inv_gamma_1+half*w(ixo^s,mom(1))**2*w(ixo^s,rho_)
672 end if
673 w(ixo^s,mom(1))=w(ixo^s,rho_)*w(ixo^s,mom(1))
674 end subroutine ffhd_to_conserved_origin
675
676 subroutine ffhd_to_primitive_origin(ixI^L,ixO^L,w,x)
678 integer, intent(in) :: ixi^l, ixo^l
679 double precision, intent(inout) :: w(ixi^s, nw)
680 double precision, intent(in) :: x(ixi^s, 1:ndim)
681 double precision :: inv_rho(ixo^s), gamma2(ixo^s)
682
683 if(fix_small_values) then
684 !> fix small values preventing NaN numbers in the following converting
685 call ffhd_handle_small_values(.false., w, x, ixi^l, ixo^l, 'ffhd_to_primitive_origin')
686 end if
687
688 w(ixo^s,mom(1)) = w(ixo^s,mom(1))/w(ixo^s,rho_)
689 if(ffhd_energy) then
690 w(ixo^s,p_)=gamma_1*(w(ixo^s,e_)-half*w(ixo^s,rho_)*w(ixo^s,mom(1))**2)
691 end if
692 end subroutine ffhd_to_primitive_origin
693
694 subroutine ffhd_ei_to_e(ixI^L,ixO^L,w,x)
696 integer, intent(in) :: ixi^l, ixo^l
697 double precision, intent(inout) :: w(ixi^s, nw)
698 double precision, intent(in) :: x(ixi^s, 1:ndim)
699
700 w(ixi^s,e_)=w(ixi^s,e_)+ffhd_kin_en(w,ixi^l,ixi^l)
701 end subroutine ffhd_ei_to_e
702
703 subroutine ffhd_e_to_ei(ixI^L,ixO^L,w,x)
705 integer, intent(in) :: ixi^l, ixo^l
706 double precision, intent(inout) :: w(ixi^s, nw)
707 double precision, intent(in) :: x(ixi^s, 1:ndim)
708
709 w(ixi^s,e_)=w(ixi^s,e_)-ffhd_kin_en(w,ixi^l,ixi^l)
710 if(fix_small_values) then
711 call ffhd_handle_small_ei(w,x,ixi^l,ixi^l,e_,'ffhd_e_to_ei')
712 end if
713 end subroutine ffhd_e_to_ei
714
715 subroutine ffhd_handle_small_values_origin(primitive, w, x, ixI^L, ixO^L, subname)
718 logical, intent(in) :: primitive
719 integer, intent(in) :: ixi^l,ixo^l
720 double precision, intent(inout) :: w(ixi^s,1:nw)
721 double precision, intent(in) :: x(ixi^s,1:ndim)
722 character(len=*), intent(in) :: subname
723
724 logical :: flag(ixi^s,1:nw)
725 double precision :: tmp2(ixi^s)
726
727 call phys_check_w(primitive, ixi^l, ixi^l, w, flag)
728
729 if(any(flag)) then
730 select case (small_values_method)
731 case ("replace")
732 where(flag(ixo^s,rho_)) w(ixo^s,rho_) = small_density
733 if(small_values_fix_iw(mom(1))) then
734 where(flag(ixo^s,rho_)) w(ixo^s, mom(1)) = 0.0d0
735 end if
736 if(ffhd_energy) then
737 if(primitive) then
738 where(flag(ixo^s,e_)) w(ixo^s,p_) = small_pressure
739 else
740 where(flag(ixo^s,e_))
741 w(ixo^s,e_) = small_e+ffhd_kin_en(w,ixi^l,ixo^l)
742 end where
743 end if
744 end if
745 case ("average")
746 call small_values_average(ixi^l, ixo^l, w, x, flag, rho_)
747 if(ffhd_energy) then
748 if(primitive) then
749 call small_values_average(ixi^l, ixo^l, w, x, flag, p_)
750 else
751 w(ixi^s,e_)=w(ixi^s,e_)-ffhd_kin_en(w,ixi^l,ixi^l)
752 call small_values_average(ixi^l, ixo^l, w, x, flag, e_)
753 w(ixi^s,e_)=w(ixi^s,e_)+ffhd_kin_en(w,ixi^l,ixi^l)
754 end if
755 end if
756 case default
757 if(.not.primitive) then
758 if(ffhd_energy) then
759 w(ixo^s,p_)=gamma_1*(w(ixo^s,e_)-ffhd_kin_en(w,ixi^l,ixo^l))
760 end if
761 w(ixo^s,mom(1))=w(ixo^s,mom(1))/w(ixo^s,rho_)
762 end if
763 call small_values_error(w, x, ixi^l, ixo^l, flag, subname)
764 end select
765 end if
766 end subroutine ffhd_handle_small_values_origin
767
768 subroutine ffhd_get_v_origin(w,x,ixI^L,ixO^L,v)
770 integer, intent(in) :: ixi^l, ixo^l
771 double precision, intent(in) :: w(ixi^s,nw), x(ixi^s,1:ndim)
772 double precision, intent(out) :: v(ixi^s,ndir)
773 double precision :: rho(ixi^s)
774 integer :: idir
775
776 call ffhd_get_rho(w,x,ixi^l,ixo^l,rho)
777 rho(ixo^s)=1.d0/rho(ixo^s)
778 do idir=1,ndir
779 v(ixo^s,ndir) = w(ixo^s,mom(1))*block%B0(ixo^s,idir,0)*rho(ixo^s)
780 end do
781 end subroutine ffhd_get_v_origin
782
783 subroutine ffhd_get_v_idim(w,x,ixI^L,ixO^L,idim,v)
785 integer, intent(in) :: ixi^l, ixo^l, idim
786 double precision, intent(in) :: w(ixi^s,nw), x(ixi^s,1:ndim)
787 double precision, intent(out) :: v(ixi^s)
788 double precision :: rho(ixi^s)
789
790 call ffhd_get_rho(w,x,ixi^l,ixo^l,rho)
791 v(ixo^s) = (w(ixo^s, mom(1))*block%B0(ixo^s,idim,0)) / rho(ixo^s)
792 end subroutine ffhd_get_v_idim
793
794 subroutine ffhd_get_cmax_origin(w,x,ixI^L,ixO^L,idim,cmax)
796 integer, intent(in) :: ixi^l, ixo^l, idim
797 ! w in primitive form
798 double precision, intent(in) :: w(ixi^s, nw), x(ixi^s,1:ndim)
799 double precision, intent(inout) :: cmax(ixi^s)
800
801 if(ffhd_energy) then
802 cmax(ixo^s)=sqrt(ffhd_gamma*w(ixo^s,p_)/w(ixo^s,rho_))*abs(block%B0(ixo^s,idim,idim))
803 else
804 cmax(ixo^s)=sqrt(ffhd_gamma*ffhd_adiab*w(ixo^s,rho_)**gamma_1)*abs(block%B0(ixo^s,idim,idim))
805 end if
806 cmax(ixo^s)=abs(w(ixo^s,mom(1))*block%B0(ixo^s,idim,0))+cmax(ixo^s)
807
808 end subroutine ffhd_get_cmax_origin
809
810 subroutine ffhd_get_cs2max(w,x,ixI^L,ixO^L,cs2max)
812 integer, intent(in) :: ixi^l, ixo^l
813 double precision, intent(in) :: w(ixi^s, nw), x(ixi^s,1:ndim)
814 double precision, intent(inout) :: cs2max
815 double precision :: cs2(ixi^s)
816
817 call ffhd_get_csound2(w,x,ixi^l,ixo^l,cs2)
818 cs2max=maxval(cs2(ixo^s))
819 end subroutine ffhd_get_cs2max
820
821 subroutine ffhd_get_a2max(w,x,ixI^L,ixO^L,a2max)
823 integer, intent(in) :: ixi^l, ixo^l
824 double precision, intent(in) :: w(ixi^s, nw), x(ixi^s,1:ndim)
825 double precision, intent(inout) :: a2max(ndim)
826 double precision :: a2(ixi^s,ndim,nw)
827 integer :: gxo^l,hxo^l,jxo^l,kxo^l,i,j
828
829 a2=zero
830 do i = 1,ndim
831 !> 4th order
832 hxo^l=ixo^l-kr(i,^d);
833 gxo^l=hxo^l-kr(i,^d);
834 jxo^l=ixo^l+kr(i,^d);
835 kxo^l=jxo^l+kr(i,^d);
836 a2(ixo^s,i,1:nw)=abs(-w(kxo^s,1:nw)+16.d0*w(jxo^s,1:nw)&
837 -30.d0*w(ixo^s,1:nw)+16.d0*w(hxo^s,1:nw)-w(gxo^s,1:nw))
838 a2max(i)=maxval(a2(ixo^s,i,1:nw))/12.d0/dxlevel(i)**2
839 end do
840 end subroutine ffhd_get_a2max
841
842 subroutine ffhd_get_tcutoff(ixI^L,ixO^L,w,x,Tco_local,Tmax_local)
844 use mod_geometry
845 integer, intent(in) :: ixi^l,ixo^l
846 double precision, intent(in) :: x(ixi^s,1:ndim)
847 double precision, intent(inout) :: w(ixi^s,1:nw)
848 double precision, intent(out) :: tco_local,tmax_local
849 double precision, parameter :: trac_delta=0.25d0
850 double precision :: tmp1(ixi^s),te(ixi^s),lts(ixi^s)
851 double precision, dimension(ixI^S,1:ndir) :: bunitvec
852 double precision, dimension(ixI^S,1:ndim) :: gradt
853 double precision :: bdir(ndim)
854 double precision :: ltrc,ltrp,altr(ixi^s)
855 integer :: idims,jxo^l,hxo^l,ixa^d,ixb^d
856 integer :: jxp^l,hxp^l,ixp^l,ixq^l
857 logical :: lrlt(ixi^s)
858
859 call ffhd_get_temperature(w,x,ixi^l,ixi^l,te)
860 tco_local=zero
861 tmax_local=maxval(te(ixo^s))
862
863 {^ifoned
864 select case(ffhd_trac_type)
865 case(0)
866 !> test case, fixed cutoff temperature
867 block%wextra(ixi^s,tcoff_)=2.5d5/unit_temperature
868 case(1)
869 hxo^l=ixo^l-1;
870 jxo^l=ixo^l+1;
871 lts(ixo^s)=0.5d0*abs(te(jxo^s)-te(hxo^s))/te(ixo^s)
872 lrlt=.false.
873 where(lts(ixo^s) > trac_delta)
874 lrlt(ixo^s)=.true.
875 end where
876 if(any(lrlt(ixo^s))) then
877 tco_local=maxval(te(ixo^s), mask=lrlt(ixo^s))
878 end if
879 case(2)
880 !> iijima et al. 2021, LTRAC method
881 ltrc=1.5d0
882 ltrp=4.d0
883 ixp^l=ixo^l^ladd1;
884 hxo^l=ixo^l-1;
885 jxo^l=ixo^l+1;
886 hxp^l=ixp^l-1;
887 jxp^l=ixp^l+1;
888 lts(ixp^s)=0.5d0*abs(te(jxp^s)-te(hxp^s))/te(ixp^s)
889 lts(ixp^s)=max(one, (exp(lts(ixp^s))/ltrc)**ltrp)
890 lts(ixo^s)=0.25d0*(lts(jxo^s)+two*lts(ixo^s)+lts(hxo^s))
891 block%wextra(ixo^s,tcoff_)=te(ixo^s)*lts(ixo^s)**0.4d0
892 case default
893 call mpistop("ffhd_trac_type not allowed for 1D simulation")
894 end select
895 }
896 {^nooned
897 select case(ffhd_trac_type)
898 case(0)
899 !> test case, fixed cutoff temperature
900 if(slab_uniform) then
901 !> assume cgs units
902 block%wextra(ixi^s,tcoff_)=max(min(3.d5/unit_temperature,6.d5/unit_temperature-3.d-4/unit_temperature*unit_length*x(ixi^s,ndim)),zero)
903 else
904 block%wextra(ixi^s,tcoff_)=2.5d5/unit_temperature
905 end if
906 case(1,4,6)
907 do idims=1,ndim
908 call gradient(te,ixi^l,ixo^l,idims,tmp1)
909 gradt(ixo^s,idims)=tmp1(ixo^s)
910 end do
911 bunitvec(ixo^s,:)=block%B0(ixo^s,:,0)
912 if(ffhd_trac_type .gt. 1) then
913 ! B direction at cell center
914 bdir=zero
915 {do ixa^d=0,1\}
916 ixb^d=(ixomin^d+ixomax^d-1)/2+ixa^d;
917 bdir(1:ndim)=bdir(1:ndim)+bunitvec(ixb^d,1:ndim)
918 {end do\}
919 if(sum(bdir(:)**2) .gt. zero) then
920 bdir(1:ndim)=bdir(1:ndim)/dsqrt(sum(bdir(:)**2))
921 end if
922 block%special_values(3:ndim+2)=bdir(1:ndim)
923 end if
924 tmp1(ixo^s)=dsqrt(sum(bunitvec(ixo^s,:)**2,dim=ndim+1))
925 where(tmp1(ixo^s)/=0.d0)
926 tmp1(ixo^s)=1.d0/tmp1(ixo^s)
927 else where
928 tmp1(ixo^s)=bigdouble
929 end where
930 ! b unit vector: magnetic field direction vector
931 do idims=1,ndim
932 bunitvec(ixo^s,idims)=bunitvec(ixo^s,idims)*tmp1(ixo^s)
933 end do
934 ! temperature length scale inversed
935 lts(ixo^s)=abs(sum(gradt(ixo^s,1:ndim)*bunitvec(ixo^s,1:ndim),dim=ndim+1))/te(ixo^s)
936 ! fraction of cells size to temperature length scale
937 if(slab_uniform) then
938 lts(ixo^s)=minval(dxlevel)*lts(ixo^s)
939 else
940 lts(ixo^s)=minval(block%ds(ixo^s,:),dim=ndim+1)*lts(ixo^s)
941 end if
942 lrlt=.false.
943 where(lts(ixo^s) > trac_delta)
944 lrlt(ixo^s)=.true.
945 end where
946 if(any(lrlt(ixo^s))) then
947 block%special_values(1)=maxval(te(ixo^s), mask=lrlt(ixo^s))
948 else
949 block%special_values(1)=zero
950 end if
951 block%special_values(2)=tmax_local
952 case(2)
953 !> iijima et al. 2021, LTRAC method
954 ltrc=1.5d0
955 ltrp=4.d0
956 ixp^l=ixo^l^ladd2;
957 do idims=1,ndim
958 ixq^l=ixp^l;
959 hxp^l=ixp^l;
960 jxp^l=ixp^l;
961 select case(idims)
962 {case(^d)
963 ixqmin^d=ixqmin^d+1
964 ixqmax^d=ixqmax^d-1
965 hxpmax^d=ixpmin^d
966 jxpmin^d=ixpmax^d
967 \}
968 end select
969 call gradient(te,ixi^l,ixq^l,idims,gradt(ixi^s,idims))
970 call gradientf(te,x,ixi^l,hxp^l,idims,gradt(ixi^s,idims),nghostcells,.true.)
971 call gradientf(te,x,ixi^l,jxp^l,idims,gradt(ixi^s,idims),nghostcells,.false.)
972 end do
973 bunitvec(ixp^s,:)=block%B0(ixp^s,:,0)
974 lts(ixp^s)=abs(sum(gradt(ixp^s,1:ndim)*bunitvec(ixp^s,1:ndim),dim=ndim+1))/te(ixp^s)
975 if(slab_uniform) then
976 lts(ixp^s)=minval(dxlevel)*lts(ixp^s)
977 else
978 lts(ixp^s)=minval(block%ds(ixp^s,:),dim=ndim+1)*lts(ixp^s)
979 end if
980 lts(ixp^s)=max(one, (exp(lts(ixp^s))/ltrc)**ltrp)
981
982 altr=zero
983 ixp^l=ixo^l^ladd1;
984 do idims=1,ndim
985 hxo^l=ixp^l-kr(idims,^d);
986 jxo^l=ixp^l+kr(idims,^d);
987 altr(ixp^s)=altr(ixp^s)+0.25d0*(lts(hxo^s)+two*lts(ixp^s)+lts(jxo^s))*bunitvec(ixp^s,idims)**2
988 end do
989 block%wextra(ixp^s,tcoff_)=te(ixp^s)*altr(ixp^s)**0.4d0
990 case(3,5)
991 !> do nothing here
992 case default
993 call mpistop("unknown ffhd_trac_type")
994 end select
995 }
996 end subroutine ffhd_get_tcutoff
997
998 subroutine ffhd_get_cbounds(wLC,wRC,wLp,wRp,x,ixI^L,ixO^L,idim,Hspeed,cmax,cmin)
1000 integer, intent(in) :: ixi^l, ixo^l, idim
1001 double precision, intent(in) :: wlc(ixi^s, nw), wrc(ixi^s, nw)
1002 double precision, intent(in) :: wlp(ixi^s, nw), wrp(ixi^s, nw)
1003 double precision, intent(in) :: x(ixi^s,1:ndim)
1004 double precision, intent(inout) :: cmax(ixi^s,1:number_species)
1005 double precision, intent(inout), optional :: cmin(ixi^s,1:number_species)
1006 double precision, intent(in) :: hspeed(ixi^s,1:number_species)
1007 double precision :: wmean(ixi^s,nw)
1008 double precision, dimension(ixI^S) :: umean, dmean, csoundl, csoundr, tmp1,tmp2,tmp3
1009 integer :: ix^d
1010
1011 select case (boundspeed)
1012 case (1)
1013 ! This implements formula (10.52) from "Riemann Solvers and Numerical
1014 ! Methods for Fluid Dynamics" by Toro.
1015 tmp1(ixo^s)=sqrt(wlp(ixo^s,rho_))
1016 tmp2(ixo^s)=sqrt(wrp(ixo^s,rho_))
1017 tmp3(ixo^s)=1.d0/(tmp1(ixo^s)+tmp2(ixo^s))
1018 umean(ixo^s)=(wlp(ixo^s,mom(1))*block%B0(ixo^s,idim,idim)*tmp1(ixo^s)&
1019 +wrp(ixo^s,mom(1))*block%B0(ixo^s,idim,idim)*tmp2(ixo^s))*tmp3(ixo^s)
1020 call ffhd_get_csound_prim(wlp,x,ixi^l,ixo^l,idim,csoundl)
1021 call ffhd_get_csound_prim(wrp,x,ixi^l,ixo^l,idim,csoundr)
1022 dmean(ixo^s)=(tmp1(ixo^s)*csoundl(ixo^s)+tmp2(ixo^s)*csoundr(ixo^s)) * &
1023 tmp3(ixo^s) + 0.5d0*tmp1(ixo^s)*tmp2(ixo^s)*tmp3(ixo^s)**2 * &
1024 (wrp(ixo^s,mom(1))*block%B0(ixo^s,idim,idim)-wlp(ixo^s,mom(1))*block%B0(ixo^s,idim,idim))**2
1025 dmean(ixo^s)=dsqrt(dmean(ixo^s))
1026 if(present(cmin)) then
1027 cmin(ixo^s,1)=umean(ixo^s)-dmean(ixo^s)
1028 cmax(ixo^s,1)=umean(ixo^s)+dmean(ixo^s)
1029 else
1030 cmax(ixo^s,1)=abs(umean(ixo^s))+dmean(ixo^s)
1031 end if
1032 case (2)
1033 wmean(ixo^s,1:nwflux)=0.5d0*(wlc(ixo^s,1:nwflux)+wrc(ixo^s,1:nwflux))
1034 tmp1(ixo^s)=wmean(ixo^s,mom(1))*block%B0(ixo^s,idim,idim)/wmean(ixo^s,rho_)
1035 call ffhd_get_csound(wmean,x,ixi^l,ixo^l,idim,csoundr)
1036 if(present(cmin)) then
1037 cmax(ixo^s,1)=max(tmp1(ixo^s)+csoundr(ixo^s),zero)
1038 cmin(ixo^s,1)=min(tmp1(ixo^s)-csoundr(ixo^s),zero)
1039 else
1040 cmax(ixo^s,1)=abs(tmp1(ixo^s))+csoundr(ixo^s)
1041 end if
1042 case (3)
1043 ! Miyoshi 2005 JCP 208, 315 equation (67)
1044 call ffhd_get_csound_prim(wlp,x,ixi^l,ixo^l,idim,csoundl)
1045 call ffhd_get_csound_prim(wrp,x,ixi^l,ixo^l,idim,csoundr)
1046 csoundl(ixo^s)=max(csoundl(ixo^s),csoundr(ixo^s))
1047 if(present(cmin)) then
1048 cmin(ixo^s,1)=min(wlp(ixo^s,mom(1))*block%B0(ixo^s,idim,idim),&
1049 wrp(ixo^s,mom(1))*block%B0(ixo^s,idim,idim))-csoundl(ixo^s)
1050 cmax(ixo^s,1)=max(wlp(ixo^s,mom(1))*block%B0(ixo^s,idim,idim),&
1051 wrp(ixo^s,mom(1))*block%B0(ixo^s,idim,idim))+csoundl(ixo^s)
1052 else
1053 cmax(ixo^s,1)=max(wlp(ixo^s,mom(1))*block%B0(ixo^s,idim,idim),&
1054 wrp(ixo^s,mom(1))*block%B0(ixo^s,idim,idim))+csoundl(ixo^s)
1055 end if
1056 end select
1057 end subroutine ffhd_get_cbounds
1058
1059 subroutine ffhd_get_csound(w,x,ixI^L,ixO^L,idim,csound)
1061 integer, intent(in) :: ixi^l, ixo^l, idim
1062 double precision, intent(in) :: w(ixi^s, nw), x(ixi^s,1:ndim)
1063 double precision, intent(out):: csound(ixi^s)
1064
1065 call ffhd_get_csound2(w,x,ixi^l,ixo^l,csound)
1066 csound(ixo^s) = dsqrt(csound(ixo^s))*abs(block%B0(ixo^s,idim,idim))
1067 end subroutine ffhd_get_csound
1068
1069 !> Calculate fast magnetosonic wave speed
1070 subroutine ffhd_get_csound_prim(w,x,ixI^L,ixO^L,idim,csound)
1072
1073 integer, intent(in) :: ixi^l, ixo^l, idim
1074 double precision, intent(in) :: w(ixi^s, nw), x(ixi^s,1:ndim)
1075 double precision, intent(out):: csound(ixi^s)
1076
1077 if(ffhd_energy) then
1078 csound(ixo^s)=ffhd_gamma*w(ixo^s,e_)/w(ixo^s,rho_)
1079 else
1080 csound(ixo^s)=ffhd_gamma*ffhd_adiab*w(ixo^s,rho_)**gamma_1
1081 end if
1082 csound(ixo^s) = dsqrt(csound(ixo^s))
1083 end subroutine ffhd_get_csound_prim
1084
1085 subroutine ffhd_get_pthermal_iso(w,x,ixI^L,ixO^L,pth)
1087
1088 integer, intent(in) :: ixi^l, ixo^l
1089 double precision, intent(in) :: w(ixi^s,nw)
1090 double precision, intent(in) :: x(ixi^s,1:ndim)
1091 double precision, intent(out):: pth(ixi^s)
1092
1093 call ffhd_get_rho(w,x,ixi^l,ixo^l,pth)
1094 pth(ixo^s)=ffhd_adiab*pth(ixo^s)**ffhd_gamma
1095 end subroutine ffhd_get_pthermal_iso
1096
1097 subroutine ffhd_get_pthermal_origin(w,x,ixI^L,ixO^L,pth)
1100 integer, intent(in) :: ixi^l, ixo^l
1101 double precision, intent(in) :: w(ixi^s,nw)
1102 double precision, intent(in) :: x(ixi^s,1:ndim)
1103 double precision, intent(out):: pth(ixi^s)
1104 integer :: iw, ix^d
1105
1106 pth(ixo^s)=gamma_1*(w(ixo^s,e_)-ffhd_kin_en(w,ixi^l,ixo^l))
1107 if (fix_small_values) then
1108 {do ix^db= ixo^lim^db\}
1109 if(pth(ix^d)<small_pressure) then
1110 pth(ix^d)=small_pressure
1111 end if
1112 {end do^D&\}
1113 elseif(check_small_values) then
1114 {do ix^db= ixo^lim^db\}
1115 if(pth(ix^d)<small_pressure) then
1116 write(*,*) "Error: small value of gas pressure",pth(ix^d),&
1117 " encountered when call ffhd_get_pthermal"
1118 write(*,*) "Iteration: ", it, " Time: ", global_time
1119 write(*,*) "Location: ", x(ix^d,:)
1120 write(*,*) "Cell number: ", ix^d
1121 do iw=1,nw
1122 write(*,*) trim(cons_wnames(iw)),": ",w(ix^d,iw)
1123 end do
1124 ! use erroneous arithmetic operation to crash the run
1125 if(trace_small_values) write(*,*) sqrt(pth(ix^d)-bigdouble)
1126 write(*,*) "Saving status at the previous time step"
1127 crash=.true.
1128 end if
1129 {end do^D&\}
1130 end if
1131 end subroutine ffhd_get_pthermal_origin
1132
1133 subroutine ffhd_get_temperature_from_te(w, x, ixI^L, ixO^L, res)
1135 integer, intent(in) :: ixi^l, ixo^l
1136 double precision, intent(in) :: w(ixi^s, 1:nw)
1137 double precision, intent(in) :: x(ixi^s, 1:ndim)
1138 double precision, intent(out):: res(ixi^s)
1139
1140 res(ixo^s) = w(ixo^s, te_)
1141 end subroutine ffhd_get_temperature_from_te
1142
1143 subroutine ffhd_get_temperature_from_eint(w, x, ixI^L, ixO^L, res)
1145 integer, intent(in) :: ixi^l, ixo^l
1146 double precision, intent(in) :: w(ixi^s, 1:nw)
1147 double precision, intent(in) :: x(ixi^s, 1:ndim)
1148 double precision, intent(out):: res(ixi^s)
1149 double precision :: r(ixi^s)
1150
1151 call ffhd_get_rfactor(w,x,ixi^l,ixo^l,r)
1152 res(ixo^s) = gamma_1 * w(ixo^s, e_)/(w(ixo^s,rho_)*r(ixo^s))
1153 end subroutine ffhd_get_temperature_from_eint
1154
1155 subroutine ffhd_get_temperature_from_etot(w, x, ixI^L, ixO^L, res)
1157 integer, intent(in) :: ixi^l, ixo^l
1158 double precision, intent(in) :: w(ixi^s, 1:nw)
1159 double precision, intent(in) :: x(ixi^s, 1:ndim)
1160 double precision, intent(out):: res(ixi^s)
1161
1162 double precision :: r(ixi^s)
1163
1164 call ffhd_get_rfactor(w,x,ixi^l,ixo^l,r)
1165 call ffhd_get_pthermal(w,x,ixi^l,ixo^l,res)
1166 res(ixo^s)=res(ixo^s)/(r(ixo^s)*w(ixo^s,rho_))
1167 end subroutine ffhd_get_temperature_from_etot
1168
1169 subroutine ffhd_get_csound2(w,x,ixI^L,ixO^L,csound2)
1171 integer, intent(in) :: ixi^l, ixo^l
1172 double precision, intent(in) :: w(ixi^s,nw)
1173 double precision, intent(in) :: x(ixi^s,1:ndim)
1174 double precision, intent(out) :: csound2(ixi^s)
1175 double precision :: rho(ixi^s)
1176
1177 call ffhd_get_rho(w,x,ixi^l,ixo^l,rho)
1178 if(ffhd_energy) then
1179 call ffhd_get_pthermal(w,x,ixi^l,ixo^l,csound2)
1180 csound2(ixo^s)=ffhd_gamma*csound2(ixo^s)/rho(ixo^s)
1181 else
1182 csound2(ixo^s)=ffhd_gamma*ffhd_adiab*rho(ixo^s)**gamma_1
1183 end if
1184 end subroutine ffhd_get_csound2
1185
1186 subroutine ffhd_get_flux(wC,w,x,ixI^L,ixO^L,idim,f)
1188 use mod_geometry
1189 integer, intent(in) :: ixi^l, ixo^l, idim
1190 ! conservative w
1191 double precision, intent(in) :: wc(ixi^s,nw)
1192 ! primitive w
1193 double precision, intent(in) :: w(ixi^s,nw)
1194 double precision, intent(in) :: x(ixi^s,1:ndim)
1195 double precision,intent(out) :: f(ixi^s,nwflux)
1196 double precision :: ptotal(ixo^s)
1197 double precision :: tmp(ixi^s)
1198 integer :: idirmin, iw, idir, jdir, kdir
1199 double precision, dimension(ixI^S) :: te,tau,sigt
1200
1201 f(ixo^s,rho_)=w(ixo^s,mom(1))*w(ixo^s,rho_)*block%B0(ixo^s,idim,idim)
1202
1203 if(ffhd_energy) then
1204 ptotal(ixo^s)=w(ixo^s,p_)
1205 else
1206 ptotal(ixo^s)=ffhd_adiab*w(ixo^s,rho_)**ffhd_gamma
1207 end if
1208
1209 ! Get flux of momentum
1210 f(ixo^s,mom(1))=(wc(ixo^s,mom(1))*w(ixo^s,mom(1))+ptotal(ixo^s))*block%B0(ixo^s,idim,idim)
1211
1212 ! Get flux of energy
1213 if(ffhd_energy) then
1214 f(ixo^s,e_)=w(ixo^s,mom(1))*(wc(ixo^s,e_)+ptotal(ixo^s))*block%B0(ixo^s,idim,idim)
1216 f(ixo^s,e_)=f(ixo^s,e_)+w(ixo^s,q_)*block%B0(ixo^s,idim,idim)
1217 f(ixo^s,q_)=zero
1218 end if
1219 end if
1220 end subroutine ffhd_get_flux
1221
1222 subroutine ffhd_add_source(qdt,dtfactor,ixI^L,ixO^L,wCT,wCTprim,w,x,qsourcesplit,active)
1227 integer, intent(in) :: ixi^l, ixo^l
1228 double precision, intent(in) :: qdt,dtfactor
1229 double precision, intent(in) :: wct(ixi^s,1:nw),wctprim(ixi^s,1:nw), x(ixi^s,1:ndim)
1230 double precision, intent(inout) :: w(ixi^s,1:nw)
1231 logical, intent(in) :: qsourcesplit
1232 logical, intent(inout) :: active
1233
1234 if (.not. qsourcesplit) then
1235 active = .true.
1236 call add_punitb(qdt,ixi^l,ixo^l,wct,w,x,wctprim)
1238 call add_hypertc_source(qdt,ixi^l,ixo^l,wct,w,x,wctprim)
1239 end if
1240 end if
1241
1242 if(ffhd_radiative_cooling) then
1243 call radiative_cooling_add_source(qdt,ixi^l,ixo^l,wct,wctprim,&
1244 w,x,qsourcesplit,active, rc_fl)
1245 end if
1246
1247 if(ffhd_viscosity) then
1248 call viscosity_add_source(qdt,ixi^l,ixo^l,wct,&
1249 w,x,ffhd_energy,qsourcesplit,active)
1250 end if
1251
1252 if(ffhd_gravity) then
1253 call gravity_add_source(qdt,ixi^l,ixo^l,wct,wctprim,&
1254 w,x,ffhd_energy,.false.,qsourcesplit,active)
1255 end if
1256
1257 ! update temperature from new pressure, density, and old ionization degree
1259 if(.not.qsourcesplit) then
1260 active = .true.
1261 call ffhd_update_temperature(ixi^l,ixo^l,wct,w,x)
1262 end if
1263 end if
1264 end subroutine ffhd_add_source
1265
1266 subroutine add_punitb(qdt,ixI^L,ixO^L,wCT,w,x,wCTprim)
1268 use mod_geometry
1269 integer, intent(in) :: ixi^l,ixo^l
1270 double precision, intent(in) :: qdt
1271 double precision, intent(in) :: wct(ixi^s,1:nw),x(ixi^s,1:ndim)
1272 double precision, intent(in) :: wctprim(ixi^s,1:nw)
1273 double precision, intent(inout) :: w(ixi^s,1:nw)
1274
1275 integer :: idims,hxo^l
1276 double precision :: divb(ixi^s)
1277
1278 divb=zero
1279 if(slab_uniform) then
1280 do idims=1,ndim
1281 hxo^l=ixo^l-kr(idims,^d);
1282 divb(ixo^s)=divb(ixo^s)+(block%B0(ixo^s,idims,idims)-block%B0(hxo^s,idims,idims))/dxlevel(idims)
1283 end do
1284 else
1285 call divvector(block%B0(ixi^s,1:ndir,0),ixi^l,ixo^l,divb)
1286 end if
1287 w(ixo^s,mom(1))=w(ixo^s,mom(1))+qdt*wctprim(ixo^s,p_)*divb(ixo^s)
1288 end subroutine add_punitb
1289
1290 subroutine ffhd_get_rho(w,x,ixI^L,ixO^L,rho)
1292 integer, intent(in) :: ixi^l, ixo^l
1293 double precision, intent(in) :: w(ixi^s,1:nw),x(ixi^s,1:ndim)
1294 double precision, intent(out) :: rho(ixi^s)
1295
1296 rho(ixo^s) = w(ixo^s,rho_)
1297 end subroutine ffhd_get_rho
1298
1299 subroutine ffhd_handle_small_ei(w, x, ixI^L, ixO^L, ie, subname)
1302 integer, intent(in) :: ixi^l,ixo^l, ie
1303 double precision, intent(inout) :: w(ixi^s,1:nw)
1304 double precision, intent(in) :: x(ixi^s,1:ndim)
1305 character(len=*), intent(in) :: subname
1306 integer :: idir
1307 logical :: flag(ixi^s,1:nw)
1308 double precision :: rho(ixi^s)
1309
1310 flag=.false.
1311 where(w(ixo^s,ie)<small_e) flag(ixo^s,ie)=.true.
1312 if(any(flag(ixo^s,ie))) then
1313 select case (small_values_method)
1314 case ("replace")
1315 where(flag(ixo^s,ie)) w(ixo^s,ie)=small_e
1316 case ("average")
1317 call small_values_average(ixi^l, ixo^l, w, x, flag, ie)
1318 case default
1319 w(ixo^s,e_)=w(ixo^s,e_)*gamma_1
1320 call ffhd_get_rho(w,x,ixi^l,ixo^l,rho)
1321 w(ixo^s,mom(1)) = w(ixo^s,mom(1))/rho(ixo^s)
1322 call small_values_error(w, x, ixi^l, ixo^l, flag, subname)
1323 end select
1324 end if
1325 end subroutine ffhd_handle_small_ei
1326
1327 subroutine ffhd_update_temperature(ixI^L,ixO^L,wCT,w,x)
1330 integer, intent(in) :: ixi^l, ixo^l
1331 double precision, intent(in) :: wct(ixi^s,1:nw), x(ixi^s,1:ndim)
1332 double precision, intent(inout) :: w(ixi^s,1:nw)
1333 double precision :: iz_h(ixo^s),iz_he(ixo^s), pth(ixi^s)
1334
1335 call ionization_degree_from_temperature(ixi^l,ixo^l,wct(ixi^s,te_),iz_h,iz_he)
1336 call ffhd_get_pthermal(w,x,ixi^l,ixo^l,pth)
1337 w(ixo^s,te_)=(2.d0+3.d0*he_abundance)*pth(ixo^s)/(w(ixo^s,rho_)*(1.d0+iz_h(ixo^s)+&
1338 he_abundance*(iz_he(ixo^s)*(iz_he(ixo^s)+1.d0)+1.d0)))
1339 end subroutine ffhd_update_temperature
1340
1341 subroutine ffhd_get_dt(w,ixI^L,ixO^L,dtnew,dx^D,x)
1343 use mod_usr_methods
1346 use mod_gravity, only: gravity_get_dt
1347 integer, intent(in) :: ixi^l, ixo^l
1348 double precision, intent(inout) :: dtnew
1349 double precision, intent(in) :: dx^d
1350 double precision, intent(in) :: w(ixi^s,1:nw)
1351 double precision, intent(in) :: x(ixi^s,1:ndim)
1352 integer :: idirmin,idim
1353 double precision :: dxarr(ndim)
1354 double precision :: current(ixi^s,7-2*ndir:3),eta(ixi^s)
1355
1356 dtnew = bigdouble
1357
1358 if(ffhd_radiative_cooling) then
1359 call cooling_get_dt(w,ixi^l,ixo^l,dtnew,dx^d,x,rc_fl)
1360 end if
1361
1362 if(ffhd_viscosity) then
1363 call viscosity_get_dt(w,ixi^l,ixo^l,dtnew,dx^d,x)
1364 end if
1365
1366 if(ffhd_gravity) then
1367 call gravity_get_dt(w,ixi^l,ixo^l,dtnew,dx^d,x)
1368 end if
1369 end subroutine ffhd_get_dt
1370
1371! subroutine ffhd_add_source_geom(qdt,dtfactor,ixI^L,ixO^L,wCT,w,x)
1372! use mod_global_parameters
1373! use mod_geometry
1374!
1375! integer, intent(in) :: ixI^L, ixO^L
1376! double precision, intent(in) :: qdt, dtfactor,x(ixI^S,1:ndim)
1377! double precision, intent(inout) :: wCT(ixI^S,1:nw), w(ixI^S,1:nw)
1378!
1379! integer :: iw,idir, h1x^L{^NOONED, h2x^L}
1380! double precision :: tmp(ixI^S),tmp1(ixI^S),tmp2(ixI^S),invrho(ixO^S),invr(ixO^S)
1381!
1382! integer :: mr_,mphi_ ! Polar var. names
1383! integer :: br_,bphi_
1384!
1385! mr_=mom(1); mphi_=mom(1)-1+phi_ ! Polar var. names
1386! br_=mag(1); bphi_=mag(1)-1+phi_
1387!
1388! ! 1/rho
1389! invrho(ixO^S)=1.d0/wCT(ixO^S,rho_)
1390! ! include dt in invr, invr is always used with qdt
1391! if(local_timestep) then
1392! invr(ixO^S) = block%dt(ixO^S) * dtfactor/x(ixO^S,1)
1393! else
1394! invr(ixO^S) = qdt/x(ixO^S,1)
1395! end if
1396!
1397!
1398! select case (coordinate)
1399! case (cylindrical)
1400! call ffhd_get_p_total(wCT,x,ixI^L,ixO^L,tmp)
1401! if(phi_>0) then
1402! w(ixO^S,mr_)=w(ixO^S,mr_)+invr(ixO^S)*(tmp(ixO^S)-&
1403! wCT(ixO^S,bphi_)**2+wCT(ixO^S,mphi_)**2*invrho(ixO^S))
1404! w(ixO^S,mphi_)=w(ixO^S,mphi_)+invr(ixO^S)*(&
1405! -wCT(ixO^S,mphi_)*wCT(ixO^S,mr_)*invrho(ixO^S) &
1406! +wCT(ixO^S,bphi_)*wCT(ixO^S,br_))
1407! if(.not.stagger_grid) then
1408! w(ixO^S,bphi_)=w(ixO^S,bphi_)+invr(ixO^S)*&
1409! (wCT(ixO^S,bphi_)*wCT(ixO^S,mr_) &
1410! -wCT(ixO^S,br_)*wCT(ixO^S,mphi_)) &
1411! *invrho(ixO^S)
1412! end if
1413! else
1414! w(ixO^S,mr_)=w(ixO^S,mr_)+invr(ixO^S)*tmp(ixO^S)
1415! end if
1416! if(ffhd_glm) w(ixO^S,br_)=w(ixO^S,br_)+wCT(ixO^S,psi_)*invr(ixO^S)
1417! case (spherical)
1418! h1x^L=ixO^L-kr(1,^D); {^NOONED h2x^L=ixO^L-kr(2,^D);}
1419! call ffhd_get_p_total(wCT,x,ixI^L,ixO^L,tmp1)
1420! ! m1
1421! tmp(ixO^S)=tmp1(ixO^S)*x(ixO^S,1) &
1422! *(block%surfaceC(ixO^S,1)-block%surfaceC(h1x^S,1))/block%dvolume(ixO^S)
1423! do idir=2,ndir
1424! tmp(ixO^S)=tmp(ixO^S)+wCT(ixO^S,mom(idir))**2*invrho(ixO^S)-wCT(ixO^S,mag(idir))**2
1425! end do
1426! w(ixO^S,mom(1))=w(ixO^S,mom(1))+tmp(ixO^S)*invr(ixO^S)
1427! ! b1
1428! if(ffhd_glm) then
1429! w(ixO^S,mag(1))=w(ixO^S,mag(1))+invr(ixO^S)*2.0d0*wCT(ixO^S,psi_)
1430! end if
1431!
1432! {^NOONED
1433! ! m2
1434! ! This will make hydrostatic p=const an exact solution
1435! if(local_timestep) then
1436! tmp(ixO^S) = block%dt(ixO^S) * tmp1(ixO^S)
1437! else
1438! tmp(ixO^S) = qdt * tmp1(ixO^S)
1439! end if
1440! w(ixO^S,mom(2))=w(ixO^S,mom(2))+tmp(ixO^S) &
1441! *(block%surfaceC(ixO^S,2)-block%surfaceC(h2x^S,2)) &
1442! /block%dvolume(ixO^S)
1443! tmp(ixO^S)=-(wCT(ixO^S,mom(1))*wCT(ixO^S,mom(2))*invrho(ixO^S) &
1444! -wCT(ixO^S,mag(1))*wCT(ixO^S,mag(2)))
1445! if(ndir==3) then
1446! tmp(ixO^S)=tmp(ixO^S)+(wCT(ixO^S,mom(3))**2*invrho(ixO^S) &
1447! -wCT(ixO^S,mag(3))**2)*dcos(x(ixO^S,2))/dsin(x(ixO^S,2))
1448! end if
1449! w(ixO^S,mom(2))=w(ixO^S,mom(2))+tmp(ixO^S)*invr(ixO^S)
1450! ! b2
1451! if(.not.stagger_grid) then
1452! tmp(ixO^S)=(wCT(ixO^S,mom(1))*wCT(ixO^S,mag(2)) &
1453! -wCT(ixO^S,mom(2))*wCT(ixO^S,mag(1)))*invrho(ixO^S)
1454! if(ffhd_glm) then
1455! tmp(ixO^S)=tmp(ixO^S) &
1456! + dcos(x(ixO^S,2))/dsin(x(ixO^S,2))*wCT(ixO^S,psi_)
1457! end if
1458! w(ixO^S,mag(2))=w(ixO^S,mag(2))+tmp(ixO^S)*invr(ixO^S)
1459! end if
1460! }
1461!
1462! if(ndir==3) then
1463! ! m3
1464! tmp(ixO^S)=-(wCT(ixO^S,mom(3))*wCT(ixO^S,mom(1))*invrho(ixO^S) &
1465! -wCT(ixO^S,mag(3))*wCT(ixO^S,mag(1))) {^NOONED &
1466! -(wCT(ixO^S,mom(2))*wCT(ixO^S,mom(3))*invrho(ixO^S) &
1467! -wCT(ixO^S,mag(2))*wCT(ixO^S,mag(3))) &
1468! *dcos(x(ixO^S,2))/dsin(x(ixO^S,2)) }
1469! w(ixO^S,mom(3))=w(ixO^S,mom(3))+tmp(ixO^S)*invr(ixO^S)
1470! ! b3
1471! if(.not.stagger_grid) then
1472! tmp(ixO^S)=(wCT(ixO^S,mom(1))*wCT(ixO^S,mag(3)) &
1473! -wCT(ixO^S,mom(3))*wCT(ixO^S,mag(1)))*invrho(ixO^S) {^NOONED &
1474! -(wCT(ixO^S,mom(3))*wCT(ixO^S,mag(2)) &
1475! -wCT(ixO^S,mom(2))*wCT(ixO^S,mag(3)))*dcos(x(ixO^S,2)) &
1476! /(wCT(ixO^S,rho_)*dsin(x(ixO^S,2))) }
1477! w(ixO^S,mag(3))=w(ixO^S,mag(3))+tmp(ixO^S)*invr(ixO^S)
1478! end if
1479! end if
1480! end select
1481! end subroutine ffhd_add_source_geom
1482
1483 function ffhd_kin_en_origin(w, ixI^L, ixO^L, inv_rho) result(ke)
1484 use mod_global_parameters, only: nw, ndim,block
1485 integer, intent(in) :: ixi^l, ixo^l
1486 double precision, intent(in) :: w(ixi^s, nw)
1487 double precision :: ke(ixo^s)
1488 double precision, intent(in), optional :: inv_rho(ixo^s)
1489
1490 if(present(inv_rho)) then
1491 ke(ixo^s)=0.5d0*w(ixo^s,mom(1))**2*inv_rho(ixo^s)
1492 else
1493 ke(ixo^s)=0.5d0*w(ixo^s,mom(1))**2/w(ixo^s,rho_)
1494 end if
1495 end function ffhd_kin_en_origin
1496
1497 subroutine rfactor_from_temperature_ionization(w,x,ixI^L,ixO^L,Rfactor)
1500 integer, intent(in) :: ixi^l, ixo^l
1501 double precision, intent(in) :: w(ixi^s,1:nw)
1502 double precision, intent(in) :: x(ixi^s,1:ndim)
1503 double precision, intent(out):: rfactor(ixi^s)
1504 double precision :: iz_h(ixo^s),iz_he(ixo^s)
1505
1506 call ionization_degree_from_temperature(ixi^l,ixo^l,w(ixi^s,te_),iz_h,iz_he)
1507 rfactor(ixo^s)=(1.d0+iz_h(ixo^s)+0.1d0*(1.d0+iz_he(ixo^s)*(1.d0+iz_he(ixo^s))))/(2.d0+3.d0*he_abundance)
1508 end subroutine rfactor_from_temperature_ionization
1509
1510 subroutine rfactor_from_constant_ionization(w,x,ixI^L,ixO^L,Rfactor)
1512 integer, intent(in) :: ixi^l, ixo^l
1513 double precision, intent(in) :: w(ixi^s,1:nw)
1514 double precision, intent(in) :: x(ixi^s,1:ndim)
1515 double precision, intent(out):: rfactor(ixi^s)
1516
1517 rfactor(ixo^s)=rr
1518 end subroutine rfactor_from_constant_ionization
1519
1520 subroutine get_tau(ixI^L,ixO^L,w,Te,tau,sigT5)
1522 integer, intent(in) :: ixi^l, ixo^l
1523 double precision, dimension(ixI^S,1:nw), intent(in) :: w
1524 double precision, dimension(ixI^S), intent(in) :: te
1525 double precision, dimension(ixI^S), intent(out) :: tau,sigt5
1526 integer :: ix^d
1527 double precision :: dxmin,taumin
1528 double precision, dimension(ixI^S) :: sigt7,eint
1529
1530 taumin=4.d0
1531 !> w supposed to be wCTprim here
1532 if(ffhd_trac) then
1533 where(te(ixo^s) .lt. block%wextra(ixo^s,tcoff_))
1534 sigt5(ixo^s)=hypertc_kappa*sqrt(block%wextra(ixo^s,tcoff_)**5)
1535 sigt7(ixo^s)=sigt5(ixo^s)*block%wextra(ixo^s,tcoff_)
1536 else where
1537 sigt5(ixo^s)=hypertc_kappa*sqrt(te(ixo^s)**5)
1538 sigt7(ixo^s)=sigt5(ixo^s)*te(ixo^s)
1539 end where
1540 else
1541 sigt5(ixo^s)=hypertc_kappa*sqrt(te(ixo^s)**5)
1542 sigt7(ixo^s)=sigt5(ixo^s)*te(ixo^s)
1543 end if
1544 eint(ixo^s)=w(ixo^s,p_)/(ffhd_gamma-one)
1545 tau(ixo^s)=max(taumin*dt,sigt7(ixo^s)/eint(ixo^s)/cs2max_global)
1546 end subroutine get_tau
1547
1548 subroutine add_hypertc_source(qdt,ixI^L,ixO^L,wCT,w,x,wCTprim)
1550 integer, intent(in) :: ixi^l,ixo^l
1551 double precision, intent(in) :: qdt
1552 double precision, dimension(ixI^S,1:ndim), intent(in) :: x
1553 double precision, dimension(ixI^S,1:nw), intent(in) :: wct,wctprim
1554 double precision, dimension(ixI^S,1:nw), intent(inout) :: w
1555 integer :: idims
1556 integer :: hxc^l,hxo^l,ixc^l,jxc^l,jxo^l,kxc^l
1557 double precision :: invdx
1558 double precision, dimension(ixI^S) :: te,tau,sigt,htc_qsrc,tface
1559 double precision, dimension(ixI^S) :: htc_esrc
1560
1561 te(ixi^s)=wctprim(ixi^s,p_)/wct(ixi^s,rho_)
1562 call get_tau(ixi^l,ixo^l,wctprim,te,tau,sigt)
1563 htc_qsrc=zero
1564 do idims=1,ndim
1565 invdx=1.d0/dxlevel(idims)
1566 ixc^l=ixo^l;
1567 ixcmin^d=ixomin^d-kr(idims,^d);ixcmax^d=ixomax^d;
1568 jxc^l=ixc^l+kr(idims,^d);
1569 kxc^l=jxc^l+kr(idims,^d);
1570 hxc^l=ixc^l-kr(idims,^d);
1571 hxo^l=ixo^l-kr(idims,^d);
1572 tface(ixc^s)=(7.d0*(te(ixc^s)+te(jxc^s))-(te(hxc^s)+te(kxc^s)))/12.d0
1573 htc_qsrc(ixo^s)=htc_qsrc(ixo^s)+sigt(ixo^s)*block%B0(ixo^s,idims,0)*(tface(ixo^s)-tface(hxo^s))*invdx
1574 end do
1575 htc_qsrc(ixo^s)=(htc_qsrc(ixo^s)+wct(ixo^s,q_))/tau(ixo^s)
1576 w(ixo^s,q_)=w(ixo^s,q_)-qdt*htc_qsrc(ixo^s)
1577 end subroutine add_hypertc_source
1578end module mod_ffhd_phys
subroutine, public mpistop(message)
Exit MPI-AMRVAC with an error message.
Module for physical and numeric constants.
double precision, parameter bigdouble
A very large real number.
subroutine add_convert_method(phys_convert_vars, nwc, dataset_names, file_suffix)
Definition mod_convert.t:59
Frozen-field hydrodynamics module.
integer, public, protected te_
Indices of temperature.
integer, public, protected ffhd_trac_type
Which TRAC method is used.
double precision, public hypertc_kappa
The thermal conductivity kappa in hyperbolic thermal conduction.
integer, public, protected e_
Index of the energy density (-1 if not present)
double precision, public ffhd_gamma
The adiabatic index.
logical, public, protected eq_state_units
double precision, public ffhd_adiab
The adiabatic constant.
procedure(sub_get_pthermal), pointer, public ffhd_get_temperature
logical, public, protected ffhd_hyperbolic_thermal_conduction
Whether hyperbolic type thermal conduction is used.
type(rc_fluid), allocatable, public rc_fl
type of fluid for radiative cooling
integer, public, protected rho_
Index of the density (in the w array)
integer, public, protected tcoff_
Index of the cutoff temperature for the TRAC method.
procedure(sub_get_pthermal), pointer, public ffhd_get_pthermal
subroutine, public ffhd_get_rho(w, x, ixil, ixol, rho)
logical, public, protected ffhd_partial_ionization
Whether plasma is partially ionized.
procedure(sub_convert), pointer, public ffhd_to_conserved
integer, dimension(:), allocatable, public, protected mom
Indices of the momentum density.
double precision, public, protected h_ion_fr
Ionization fraction of H H_ion_fr = H+/(H+ + H)
procedure(fun_kin_en), pointer, public ffhd_kin_en
subroutine, public ffhd_phys_init()
procedure(sub_get_v), pointer, public ffhd_get_v
subroutine, public ffhd_get_csound2(w, x, ixil, ixol, csound2)
logical, public, protected ffhd_energy
Whether an energy equation is used.
double precision, public, protected rr
type(tc_fluid), allocatable, public tc_fl
type of fluid for thermal conduction
type(te_fluid), allocatable, public te_fl_ffhd
type of fluid for thermal emission synthesis
double precision, public, protected he_abundance
Helium abundance over Hydrogen.
logical, public, protected ffhd_viscosity
Whether viscosity is added.
logical, public, protected ffhd_radiative_cooling
Whether radiative cooling is added.
subroutine, public ffhd_get_v_idim(w, x, ixil, ixol, idim, v)
integer, public, protected q_
procedure(sub_convert), pointer, public ffhd_to_primitive
integer, public, protected tweight_
double precision, public, protected he_ion_fr2
Ratio of number He2+ / number He+ + He2+ He_ion_fr2 = He2+/(He2+ + He+)
logical, public, protected ffhd_trac
Whether TRAC method is used.
logical, public, protected ffhd_thermal_conduction
Whether thermal conduction is used.
subroutine, public ffhd_ei_to_e(ixil, ixol, w, x)
logical, public, protected ffhd_gravity
Whether gravity is added.
integer, public, protected p_
Index of the gas pressure (-1 if not present) should equal e_.
double precision, public, protected ffhd_trac_mask
Height of the mask used in the TRAC method.
double precision, public, protected he_ion_fr
Ionization fraction of He He_ion_fr = (He2+ + He+)/(He2+ + He+ + He)
integer, public, protected ffhd_trac_finegrid
Distance between two adjacent traced magnetic field lines (in finest cell size)
subroutine, public ffhd_e_to_ei(ixil, ixol, w, x)
Module for flux conservation near refinement boundaries.
Module with geometry-related routines (e.g., divergence, curl)
Definition mod_geometry.t:2
subroutine divvector(qvec, ixil, ixol, divq, nth_in)
subroutine gradient(q, ixil, ixol, idir, gradq, nth_in)
This module contains definitions of global parameters and variables and some generic functions/subrou...
type(state), pointer block
Block pointer for using one block and its previous state.
double precision unit_time
Physical scaling factor for time.
double precision unit_density
Physical scaling factor for density.
integer, parameter unitpar
file handle for IO
double precision unit_mass
Physical scaling factor for mass.
integer, dimension(3, 3) kr
Kronecker delta tensor.
double precision unit_numberdensity
Physical scaling factor for number density.
character(len=std_len) convert_type
Which format to use when converting.
double precision unit_pressure
Physical scaling factor for pressure.
integer, parameter ndim
Number of spatial dimensions for grid variables.
double precision unit_length
Physical scaling factor for length.
character(len=std_len), dimension(:), allocatable par_files
Which par files are used as input.
integer mype
The rank of the current MPI task.
double precision, dimension(:), allocatable, parameter d
double precision dt
global time step
integer ndir
Number of spatial dimensions (components) for vector variables.
double precision unit_velocity
Physical scaling factor for velocity.
logical b0field
split magnetic field as background B0 field
logical need_global_cs2max
global value for csound speed
double precision unit_temperature
Physical scaling factor for temperature.
logical si_unit
Use SI units (.true.) or use cgs units (.false.)
double precision, dimension(:,:), allocatable dx
logical phys_trac
Use TRAC for MHD or 1D HD.
logical fix_small_values
fix small values with average or replace methods
double precision, dimension(^nd) dxlevel
store unstretched cell size of current level
double precision cs2max_global
global largest cs2 for hyperbolic thermal conduction
logical slab_uniform
uniform Cartesian geometry or not (stretched Cartesian)
integer boundspeed
bound (left/min and right.max) speed of Riemann fan
integer, parameter unitconvert
integer number_equi_vars
number of equilibrium set variables, besides the mag field
Module for including gravity in (magneto)hydrodynamics simulations.
Definition mod_gravity.t:2
subroutine gravity_get_dt(w, ixil, ixol, dtnew, dxd, x)
Definition mod_gravity.t:87
subroutine gravity_init()
Initialize the module.
Definition mod_gravity.t:26
subroutine gravity_add_source(qdt, ixil, ixol, wct, wctprim, w, x, energy, rhov, qsourcesplit, active)
w[iw]=w[iw]+qdt*S[wCT,qtC,x] where S is the source based on wCT within ixO
Definition mod_gravity.t:43
module ionization degree - get ionization degree for given temperature
subroutine ionization_degree_from_temperature(ixil, ixol, te, iz_h, iz_he)
Module containing all the particle routines.
This module defines the procedures of a physics module. It contains function pointers for the various...
Definition mod_physics.t:4
module radiative cooling – add optically thin radiative cooling for HD and MHD
subroutine radiative_cooling_init_params(phys_gamma, he_abund)
Radiative cooling initialization.
subroutine cooling_get_dt(w, ixil, ixol, dtnew, dxd, x, fl)
subroutine radiative_cooling_init(fl, read_params)
subroutine radiative_cooling_add_source(qdt, ixil, ixol, wct, wctprim, w, x, qsourcesplit, active, fl)
Module for handling problematic values in simulations, such as negative pressures.
subroutine, public small_values_average(ixil, ixol, w, x, w_flag, windex)
logical, public trace_small_values
trace small values in the source file using traceback flag of compiler
subroutine, public small_values_error(wprim, x, ixil, ixol, w_flag, subname)
logical, dimension(:), allocatable, public small_values_fix_iw
Whether to apply small value fixes to certain variables.
character(len=20), public small_values_method
How to handle small values.
Generic supertimestepping method 1) in amrvac.par in sts_list set the following parameters which have...
subroutine, public add_sts_method(sts_getdt, sts_set_sources, startvar, nflux, startwbc, nwbc, evolve_b)
subroutine which added programatically a term to be calculated using STS Params: sts_getdt function c...
subroutine, public set_conversion_methods_to_head(sts_before_first_cycle, sts_after_last_cycle)
Set the hooks called before the first cycle and after the last cycle in the STS update This method sh...
subroutine, public set_error_handling_to_head(sts_error_handling)
Set the hook of error handling in the STS update. This method is called before updating the BC....
subroutine, public sts_init()
Initialize sts module.
Thermal conduction for HD and MHD or RHD and RMHD or twofl (plasma-neutral) module Adaptation of mod_...
subroutine, public tc_get_hd_params(fl, read_hd_params)
Init TC coefficients: HD case.
double precision function, public get_tc_dt_mhd(w, ixil, ixol, dxd, x, fl)
Get the explicut timestep for the TC (mhd implementation)
subroutine tc_init_params(phys_gamma)
subroutine, public sts_set_source_tc_mhd(ixil, ixol, w, x, wres, fix_conserve_at_step, my_dt, igrid, nflux, fl)
anisotropic thermal conduction with slope limited symmetric scheme Sharma 2007 Journal of Computation...
subroutine get_euv_image(qunit, fl)
subroutine get_sxr_image(qunit, fl)
subroutine get_euv_spectrum(qunit, fl)
subroutine get_whitelight_image(qunit, fl)
Module with all the methods that users can customize in AMRVAC.
procedure(rfactor), pointer usr_rfactor
procedure(set_equi_vars), pointer usr_set_equi_vars
The module add viscous source terms and check time step.
subroutine viscosity_add_source(qdt, ixil, ixol, wct, w, x, energy, qsourcesplit, active)
subroutine viscosity_init(phys_wider_stencil)
Initialize the module.
subroutine viscosity_get_dt(w, ixil, ixol, dtnew, dxd, x)