24 logical,
public,
protected ::
hd_dust = .false.
48 integer,
public,
protected ::
rho_
51 integer,
allocatable,
public,
protected ::
mom(:)
54 integer,
allocatable,
public,
protected ::
tracer(:)
57 integer,
public,
protected ::
e_
60 integer,
public,
protected ::
p_
63 integer,
public,
protected ::
te_
69 double precision,
public ::
hd_gamma = 5.d0/3.0d0
75 double precision,
protected :: small_e
78 logical,
public,
protected ::
hd_trac = .false.
85 double precision,
public,
protected ::
h_ion_fr=1d0
88 double precision,
public,
protected ::
he_ion_fr=1d0
95 double precision,
public,
protected ::
rr=1d0
115 subroutine hd_read_params(files)
117 character(len=*),
intent(in) :: files(:)
126 do n = 1,
size(files)
127 open(
unitpar, file=trim(files(n)), status=
"old")
128 read(
unitpar, hd_list,
end=111)
132 end subroutine hd_read_params
135 subroutine hd_write_info(fh)
137 integer,
intent(in) :: fh
138 integer,
parameter :: n_par = 1
139 double precision :: values(n_par)
140 character(len=name_len) :: names(n_par)
141 integer,
dimension(MPI_STATUS_SIZE) :: st
144 call mpi_file_write(fh, n_par, 1, mpi_integer, st, er)
148 call mpi_file_write(fh, values, n_par, mpi_double_precision, st, er)
149 call mpi_file_write(fh, names, n_par * name_len, mpi_character, st, er)
150 end subroutine hd_write_info
175 phys_internal_e = .false.
184 if(
mype==0)
write(*,*)
'WARNING: set hd_trac_type=1'
189 if(
mype==0)
write(*,*)
'WARNING: set hd_trac=F when ndim>=2'
197 if(
mype==0)
write(*,*)
'WARNING: set hd_thermal_conduction=F when hd_energy=F'
201 if(
mype==0)
write(*,*)
'WARNING: set hd_radiative_cooling=F when hd_energy=F'
207 if(
mype==0)
write(*,*)
'WARNING: set hd_partial_ionization=F when eq_state_units=F'
212 allocate(start_indices(number_species),stop_indices(number_species))
220 mom(:) = var_set_momentum(
ndir)
224 e_ = var_set_energy()
231 phys_get_dt => hd_get_dt
232 phys_get_cmax => hd_get_cmax
233 phys_get_a2max => hd_get_a2max
234 phys_get_tcutoff => hd_get_tcutoff
235 phys_get_cbounds => hd_get_cbounds
236 phys_get_flux => hd_get_flux
237 phys_add_source_geom => hd_add_source_geom
238 phys_add_source => hd_add_source
244 phys_get_v => hd_get_v
245 phys_get_rho => hd_get_rho
246 phys_write_info => hd_write_info
247 phys_handle_small_values => hd_handle_small_values
250 call hd_physical_units()
260 tracer(itr) = var_set_fluxvar(
"trc",
"trp", itr, need_bc=.false.)
267 stop_indices(1)=nwflux
271 te_ = var_set_auxvar(
'Te',
'Te')
285 hd_get_rfactor=>rfactor_from_temperature_ionization
286 phys_update_temperature => hd_update_temperature
290 hd_get_rfactor=>rfactor_from_constant_ionization
296 call mpistop(
"thermal conduction needs hd_energy=T")
306 tc_fl%get_temperature_from_conserved => hd_get_temperature_from_etot
307 tc_fl%get_temperature_from_eint => hd_get_temperature_from_eint
308 tc_fl%get_rho => hd_get_rho
315 call mpistop(
"radiative cooling needs hd_energy=T")
319 rc_fl%get_rho => hd_get_rho
321 rc_fl%get_var_Rfactor => hd_get_rfactor
328 te_fl_hd%get_var_Rfactor => hd_get_rfactor
330 phys_te_images => hd_te_images
350 if (.not.
allocated(flux_type))
then
351 allocate(flux_type(
ndir, nw))
352 flux_type = flux_default
353 else if (any(shape(flux_type) /= [
ndir, nw]))
then
354 call mpistop(
"phys_check error: flux_type has wrong shape")
358 allocate(iw_vector(nvector))
359 iw_vector(1) =
mom(1) - 1
366 subroutine hd_te_images
370 case(
'EIvtiCCmpi',
'EIvtuCCmpi')
372 case(
'ESvtiCCmpi',
'ESvtuCCmpi')
374 case(
'SIvtiCCmpi',
'SIvtuCCmpi')
376 case(
'WIvtiCCmpi',
'WIvtuCCmpi')
379 call mpistop(
"Error in synthesize emission: Unknown convert_type")
381 end subroutine hd_te_images
386 subroutine hd_sts_set_source_tc_hd(ixI^L,ixO^L,w,x,wres,fix_conserve_at_step,my_dt,igrid,nflux)
390 integer,
intent(in) :: ixi^
l, ixo^
l, igrid, nflux
391 double precision,
intent(in) :: x(ixi^s,1:
ndim)
392 double precision,
intent(inout) :: wres(ixi^s,1:nw), w(ixi^s,1:nw)
393 double precision,
intent(in) :: my_dt
394 logical,
intent(in) :: fix_conserve_at_step
396 end subroutine hd_sts_set_source_tc_hd
398 function hd_get_tc_dt_hd(w,ixI^L,ixO^L,dx^D,x)
result(dtnew)
405 integer,
intent(in) :: ixi^
l, ixo^
l
406 double precision,
intent(in) ::
dx^
d, x(ixi^s,1:
ndim)
407 double precision,
intent(in) :: w(ixi^s,1:nw)
408 double precision :: dtnew
411 end function hd_get_tc_dt_hd
413 subroutine hd_tc_handle_small_e(w, x, ixI^L, ixO^L, step)
418 integer,
intent(in) :: ixi^
l,ixo^
l
419 double precision,
intent(inout) :: w(ixi^s,1:nw)
420 double precision,
intent(in) :: x(ixi^s,1:
ndim)
421 integer,
intent(in) :: step
424 logical :: flag(ixi^s,1:nw)
425 character(len=140) :: error_msg
428 where(w(ixo^s,
e_)<small_e) flag(ixo^s,
e_)=.true.
429 if(any(flag(ixo^s,
e_)))
then
432 where(flag(ixo^s,
e_)) w(ixo^s,
e_)=small_e
439 w(ixo^s, iw_mom(idir)) = w(ixo^s, iw_mom(idir))/w(ixo^s,
rho_)
441 write(error_msg,
"(a,i3)")
"Thermal conduction step ", step
445 end subroutine hd_tc_handle_small_e
448 subroutine tc_params_read_hd(fl)
450 type(tc_fluid),
intent(inout) :: fl
452 logical :: tc_saturate=.false.
453 double precision :: tc_k_para=0d0
455 namelist /tc_list/ tc_saturate, tc_k_para
459 read(
unitpar, tc_list,
end=111)
462 fl%tc_saturate = tc_saturate
463 fl%tc_k_para = tc_k_para
465 end subroutine tc_params_read_hd
467 subroutine hd_get_rho(w,x,ixI^L,ixO^L,rho)
469 integer,
intent(in) :: ixi^
l, ixo^
l
470 double precision,
intent(in) :: w(ixi^s,1:nw),x(ixi^s,1:
ndim)
471 double precision,
intent(out) :: rho(ixi^s)
473 rho(ixo^s) = w(ixo^s,
rho_)
475 end subroutine hd_get_rho
479 subroutine rc_params_read(fl)
483 type(rc_fluid),
intent(inout) :: fl
486 integer :: ncool = 4000
487 double precision :: cfrac=0.1d0
490 character(len=std_len) :: coolcurve=
'JCcorona'
493 character(len=std_len) :: coolmethod=
'exact'
496 logical :: tfix=.false.
502 logical :: rc_split=.false.
505 namelist /rc_list/ coolcurve, coolmethod, ncool, cfrac, tlow, tfix, rc_split
509 read(
unitpar, rc_list,
end=111)
514 fl%coolcurve=coolcurve
515 fl%coolmethod=coolmethod
520 end subroutine rc_params_read
528 if (
hd_gamma <= 0.0d0)
call mpistop (
"Error: hd_gamma <= 0")
529 if (
hd_adiab < 0.0d0)
call mpistop (
"Error: hd_adiab < 0")
533 call mpistop (
"Error: hd_gamma <= 0 or hd_gamma == 1.0")
546 subroutine hd_physical_units
548 double precision :: mp,kb
549 double precision :: a,b
596 end subroutine hd_physical_units
603 logical,
intent(in) :: primitive
604 integer,
intent(in) :: ixi^
l, ixo^
l
605 double precision,
intent(in) :: w(ixi^s, nw)
606 logical,
intent(inout) :: flag(ixi^s,1:nw)
607 double precision :: tmp(ixi^s)
615 tmp(ixo^s) = (
hd_gamma - 1.0d0)*(w(ixo^s,
e_) - &
631 integer,
intent(in) :: ixi^
l, ixo^
l
632 double precision,
intent(inout) :: w(ixi^s, nw)
633 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
634 double precision :: invgam
644 w(ixo^s,
e_) = w(ixo^s,
e_) * invgam + &
645 0.5d0 * sum(w(ixo^s,
mom(:))**2, dim=
ndim+1) * w(ixo^s,
rho_)
650 w(ixo^s,
mom(idir)) = w(ixo^s,
rho_) * w(ixo^s,
mom(idir))
663 integer,
intent(in) :: ixi^
l, ixo^
l
664 double precision,
intent(inout) :: w(ixi^s, nw)
665 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
667 double precision :: inv_rho(ixo^s)
670 call hd_handle_small_values(.false., w, x, ixi^
l, ixo^
l,
'hd_to_primitive')
673 inv_rho = 1.0d0 / w(ixo^s,
rho_)
683 w(ixo^s,
mom(idir)) = w(ixo^s,
mom(idir)) * inv_rho
694 subroutine hd_ei_to_e(ixI^L,ixO^L,w,x)
696 integer,
intent(in) :: ixi^
l, ixo^
l
697 double precision,
intent(inout) :: w(ixi^s, nw)
698 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
701 w(ixo^s,
e_)=w(ixo^s,
e_)&
704 end subroutine hd_ei_to_e
707 subroutine hd_e_to_ei(ixI^L,ixO^L,w,x)
709 integer,
intent(in) :: ixi^
l, ixo^
l
710 double precision,
intent(inout) :: w(ixi^s, nw)
711 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
714 w(ixo^s,
e_)=w(ixo^s,
e_)&
717 end subroutine hd_e_to_ei
719 subroutine e_to_rhos(ixI^L, ixO^L, w, x)
722 integer,
intent(in) :: ixi^
l, ixo^
l
723 double precision :: w(ixi^s, nw)
724 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
730 call mpistop(
"energy from entropy can not be used with -eos = iso !")
732 end subroutine e_to_rhos
734 subroutine rhos_to_e(ixI^L, ixO^L, w, x)
737 integer,
intent(in) :: ixi^
l, ixo^
l
738 double precision :: w(ixi^s, nw)
739 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
745 call mpistop(
"entropy from energy can not be used with -eos = iso !")
747 end subroutine rhos_to_e
750 subroutine hd_get_v_idim(w, x, ixI^L, ixO^L, idim, v)
752 integer,
intent(in) :: ixi^
l, ixo^
l, idim
753 double precision,
intent(in) :: w(ixi^s, nw), x(ixi^s, 1:
ndim)
754 double precision,
intent(out) :: v(ixi^s)
756 v(ixo^s) = w(ixo^s,
mom(idim)) / w(ixo^s,
rho_)
757 end subroutine hd_get_v_idim
760 subroutine hd_get_v(w,x,ixI^L,ixO^L,v)
763 integer,
intent(in) :: ixi^
l, ixo^
l
764 double precision,
intent(in) :: w(ixi^s,nw), x(ixi^s,1:^nd)
765 double precision,
intent(out) :: v(ixi^s,1:
ndir)
770 v(ixo^s,idir) = w(ixo^s,
mom(idir)) / w(ixo^s,
rho_)
773 end subroutine hd_get_v
776 subroutine hd_get_cmax(w, x, ixI^L, ixO^L, idim, cmax)
781 integer,
intent(in) :: ixi^
l, ixo^
l, idim
783 double precision,
intent(in) :: w(ixi^s, nw), x(ixi^s, 1:
ndim)
784 double precision,
intent(inout) :: cmax(ixi^s)
794 cmax(ixo^s)=dabs(w(ixo^s,
mom(idim)))+dsqrt(
hd_gamma*cmax(ixo^s)/w(ixo^s,
rho_))
800 end subroutine hd_get_cmax
802 subroutine hd_get_a2max(w,x,ixI^L,ixO^L,a2max)
805 integer,
intent(in) :: ixi^
l, ixo^
l
806 double precision,
intent(in) :: w(ixi^s, nw), x(ixi^s,1:
ndim)
807 double precision,
intent(inout) :: a2max(
ndim)
808 double precision :: a2(ixi^s,
ndim,nw)
809 integer :: gxo^
l,hxo^
l,jxo^
l,kxo^
l,i,j
814 hxo^
l=ixo^
l-
kr(i,^
d);
815 gxo^
l=hxo^
l-
kr(i,^
d);
816 jxo^
l=ixo^
l+
kr(i,^
d);
817 kxo^
l=jxo^
l+
kr(i,^
d);
818 a2(ixo^s,i,1:nw)=dabs(-w(kxo^s,1:nw)+16.d0*w(jxo^s,1:nw)&
819 -30.d0*w(ixo^s,1:nw)+16.d0*w(hxo^s,1:nw)-w(gxo^s,1:nw))
820 a2max(i)=maxval(a2(ixo^s,i,1:nw))/12.d0/
dxlevel(i)**2
822 end subroutine hd_get_a2max
825 subroutine hd_get_tcutoff(ixI^L,ixO^L,w,x,tco_local,Tmax_local)
827 integer,
intent(in) :: ixi^
l,ixo^
l
828 double precision,
intent(in) :: x(ixi^s,1:
ndim)
830 double precision,
intent(inout) :: w(ixi^s,1:nw)
831 double precision,
intent(out) :: tco_local, tmax_local
833 double precision,
parameter :: trac_delta=0.25d0
834 double precision :: tmp1(ixi^s),te(ixi^s),lts(ixi^s)
835 double precision :: ltr(ixi^s),ltrc,ltrp,tcoff(ixi^s)
836 integer :: jxo^
l,hxo^
l
837 integer :: jxp^
l,hxp^
l,ixp^
l
838 logical :: lrlt(ixi^s)
841 call hd_get_rfactor(w,x,ixi^
l,ixi^
l,te)
842 te(ixi^s)=w(ixi^s,
p_)/(te(ixi^s)*w(ixi^s,
rho_))
845 tmax_local=maxval(te(ixo^s))
852 lts(ixo^s)=0.5d0*dabs(te(jxo^s)-te(hxo^s))/te(ixo^s)
854 where(lts(ixo^s) > trac_delta)
857 if(any(lrlt(ixo^s)))
then
858 tco_local=maxval(te(ixo^s), mask=lrlt(ixo^s))
869 lts(ixp^s)=0.5d0*abs(te(jxp^s)-te(hxp^s))/te(ixp^s)
870 ltr(ixp^s)=max(one, (exp(lts(ixp^s))/ltrc)**ltrp)
871 w(ixo^s,
tcoff_)=te(ixo^s)*&
872 (0.25*(ltr(jxo^s)+two*ltr(ixo^s)+ltr(hxo^s)))**0.4d0
874 call mpistop(
"mhd_trac_type not allowed for 1D simulation")
877 end subroutine hd_get_tcutoff
880 subroutine hd_get_cbounds(wLC, wRC, wLp, wRp, x, ixI^L, ixO^L, idim,Hspeed,cmax, cmin)
885 integer,
intent(in) :: ixi^
l, ixo^
l, idim
887 double precision,
intent(in) :: wlc(ixi^s,
nw), wrc(ixi^s,
nw)
889 double precision,
intent(in) :: wlp(ixi^s,
nw), wrp(ixi^s,
nw)
890 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
892 double precision,
intent(inout),
optional :: cmin(ixi^s,1:
number_species)
895 double precision :: wmean(ixi^s,
nw)
896 double precision,
dimension(ixI^S) :: umean, dmean, csoundl, csoundr, tmp1,tmp2,tmp3
904 tmp1(ixo^s)=dsqrt(wlp(ixo^s,
rho_))
905 tmp2(ixo^s)=dsqrt(wrp(ixo^s,
rho_))
906 tmp3(ixo^s)=1.d0/(dsqrt(wlp(ixo^s,
rho_))+dsqrt(wrp(ixo^s,
rho_)))
907 umean(ixo^s)=(wlp(ixo^s,
mom(idim))*tmp1(ixo^s)+wrp(ixo^s,
mom(idim))*tmp2(ixo^s))*tmp3(ixo^s)
917 dmean(ixo^s) = (tmp1(ixo^s)*csoundl(ixo^s)+tmp2(ixo^s)*csoundr(ixo^s)) * &
918 tmp3(ixo^s) + 0.5d0*tmp1(ixo^s)*tmp2(ixo^s)*tmp3(ixo^s)**2 * &
919 (wrp(ixo^s,
mom(idim))-wlp(ixo^s,
mom(idim)))**2
921 dmean(ixo^s)=dsqrt(dmean(ixo^s))
922 if(
present(cmin))
then
923 cmin(ixo^s,1)=umean(ixo^s)-dmean(ixo^s)
924 cmax(ixo^s,1)=umean(ixo^s)+dmean(ixo^s)
926 {
do ix^db=ixomin^db,ixomax^db\}
927 cmin(ix^
d,1)=sign(one,cmin(ix^
d,1))*max(abs(cmin(ix^
d,1)),hspeed(ix^
d,1))
928 cmax(ix^
d,1)=sign(one,cmax(ix^
d,1))*max(abs(cmax(ix^
d,1)),hspeed(ix^
d,1))
932 cmax(ixo^s,1)=dabs(umean(ixo^s))+dmean(ixo^s)
936 wmean(ixo^s,1:nwflux)=0.5d0*(wlc(ixo^s,1:nwflux)+wrc(ixo^s,1:nwflux))
937 call dust_get_cmax(wmean, x, ixi^l, ixo^l, idim, cmax, cmin)
941 wmean(ixo^s,1:nwflux)=0.5d0*(wlc(ixo^s,1:nwflux)+wrc(ixo^s,1:nwflux))
942 tmp1(ixo^s)=wmean(ixo^s,
mom(idim))/wmean(ixo^s,
rho_)
944 csoundr(ixo^s) = dsqrt(csoundr(ixo^s))
946 if(
present(cmin))
then
947 cmax(ixo^s,1)=max(tmp1(ixo^s)+csoundr(ixo^s),zero)
948 cmin(ixo^s,1)=min(tmp1(ixo^s)-csoundr(ixo^s),zero)
949 if(h_correction)
then
950 {
do ix^db=ixomin^db,ixomax^db\}
951 cmin(ix^d,1)=sign(one,cmin(ix^d,1))*max(abs(cmin(ix^d,1)),hspeed(ix^d,1))
952 cmax(ix^d,1)=sign(one,cmax(ix^d,1))*max(abs(cmax(ix^d,1)),hspeed(ix^d,1))
956 cmax(ixo^s,1)=dabs(tmp1(ixo^s))+csoundr(ixo^s)
960 call dust_get_cmax(wmean, x, ixi^l, ixo^l, idim, cmax, cmin)
971 csoundl(ixo^s)=max(dsqrt(csoundl(ixo^s)),dsqrt(csoundr(ixo^s)))
972 if(
present(cmin))
then
973 cmin(ixo^s,1)=min(wlp(ixo^s,
mom(idim)),wrp(ixo^s,
mom(idim)))-csoundl(ixo^s)
974 cmax(ixo^s,1)=max(wlp(ixo^s,
mom(idim)),wrp(ixo^s,
mom(idim)))+csoundl(ixo^s)
975 if(h_correction)
then
976 {
do ix^db=ixomin^db,ixomax^db\}
977 cmin(ix^d,1)=sign(one,cmin(ix^d,1))*max(abs(cmin(ix^d,1)),hspeed(ix^d,1))
978 cmax(ix^d,1)=sign(one,cmax(ix^d,1))*max(abs(cmax(ix^d,1)),hspeed(ix^d,1))
982 cmax(ixo^s,1)=max(wlp(ixo^s,
mom(idim)),wrp(ixo^s,
mom(idim)))+csoundl(ixo^s)
985 wmean(ixo^s,1:nwflux)=0.5d0*(wlc(ixo^s,1:nwflux)+wrc(ixo^s,1:nwflux))
986 call dust_get_cmax(wmean, x, ixi^l, ixo^l, idim, cmax, cmin)
990 end subroutine hd_get_cbounds
996 integer,
intent(in) :: ixi^
l, ixo^
l
997 double precision,
intent(in) :: w(ixi^s,nw)
998 double precision,
intent(in) :: x(ixi^s,1:
ndim)
999 double precision,
intent(out) :: csound2(ixi^s)
1012 integer,
intent(in) :: ixi^
l, ixo^
l
1013 double precision,
intent(in) :: w(ixi^s, 1:nw)
1014 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
1015 double precision,
intent(out):: pth(ixi^s)
1019 pth(ixo^s) = (
hd_gamma - 1.0d0) * (w(ixo^s,
e_) - &
1030 {
do ix^db= ixo^lim^db\}
1036 {
do ix^db= ixo^lim^db\}
1038 write(*,*)
"Error: small value of gas pressure",pth(ix^
d),&
1039 " encountered when call hd_get_pthermal"
1041 write(*,*)
"Location: ", x(ix^
d,:)
1042 write(*,*)
"Cell number: ", ix^
d
1044 write(*,*) trim(cons_wnames(iw)),
": ",w(ix^
d,iw)
1048 write(*,*)
"Saving status at the previous time step"
1057 subroutine hd_get_temperature_from_etot(w, x, ixI^L, ixO^L, res)
1059 integer,
intent(in) :: ixi^
l, ixo^
l
1060 double precision,
intent(in) :: w(ixi^s, 1:nw)
1061 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
1062 double precision,
intent(out):: res(ixi^s)
1064 double precision :: r(ixi^s)
1066 call hd_get_rfactor(w,x,ixi^
l,ixo^
l,r)
1068 res(ixo^s)=res(ixo^s)/(r(ixo^s)*w(ixo^s,
rho_))
1069 end subroutine hd_get_temperature_from_etot
1072 subroutine hd_get_temperature_from_eint(w, x, ixI^L, ixO^L, res)
1074 integer,
intent(in) :: ixi^
l, ixo^
l
1075 double precision,
intent(in) :: w(ixi^s, 1:nw)
1076 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
1077 double precision,
intent(out):: res(ixi^s)
1079 double precision :: r(ixi^s)
1081 call hd_get_rfactor(w,x,ixi^
l,ixo^
l,r)
1082 res(ixo^s) = (
hd_gamma - 1.0d0) * w(ixo^s,
e_)/(w(ixo^s,
rho_)*r(ixo^s))
1083 end subroutine hd_get_temperature_from_eint
1086 subroutine hd_get_flux_cons(w, x, ixI^L, ixO^L, idim, f)
1090 integer,
intent(in) :: ixi^
l, ixo^
l, idim
1091 double precision,
intent(in) :: w(ixi^s, 1:nw), x(ixi^s, 1:
ndim)
1092 double precision,
intent(out) :: f(ixi^s, nwflux)
1093 double precision :: pth(ixi^s), v(ixi^s),frame_vel(ixi^s)
1094 integer :: idir, itr
1097 call hd_get_v_idim(w, x, ixi^
l, ixo^
l, idim, v)
1099 f(ixo^s,
rho_) = v(ixo^s) * w(ixo^s,
rho_)
1103 f(ixo^s,
mom(idir)) = v(ixo^s) * w(ixo^s,
mom(idir))
1106 f(ixo^s,
mom(idim)) = f(ixo^s,
mom(idim)) + pth(ixo^s)
1110 f(ixo^s,
e_) = v(ixo^s) * (w(ixo^s,
e_) + pth(ixo^s))
1114 f(ixo^s,
tracer(itr)) = v(ixo^s) * w(ixo^s,
tracer(itr))
1122 end subroutine hd_get_flux_cons
1125 subroutine hd_get_flux(wC, w, x, ixI^L, ixO^L, idim, f)
1130 integer,
intent(in) :: ixi^
l, ixo^
l, idim
1132 double precision,
intent(in) :: wc(ixi^s, 1:nw)
1134 double precision,
intent(in) :: w(ixi^s, 1:nw)
1135 double precision,
intent(in) :: x(ixi^s, 1:
ndim)
1136 double precision,
intent(out) :: f(ixi^s, nwflux)
1137 double precision :: pth(ixi^s),frame_vel(ixi^s)
1138 integer :: idir, itr
1141 pth(ixo^s) = w(ixo^s,
p_)
1146 f(ixo^s,
rho_) = w(ixo^s,
mom(idim)) * w(ixo^s,
rho_)
1150 f(ixo^s,
mom(idir)) = w(ixo^s,
mom(idim)) * wc(ixo^s,
mom(idir))
1153 f(ixo^s,
mom(idim)) = f(ixo^s,
mom(idim)) + pth(ixo^s)
1157 f(ixo^s,
e_) = w(ixo^s,
mom(idim)) * (wc(ixo^s,
e_) + w(ixo^s,
p_))
1174 end subroutine hd_get_flux
1183 subroutine hd_add_source_geom(qdt, dtfactor, ixI^L, ixO^L, wCT, wprim, w, x)
1190 integer,
intent(in) :: ixi^
l, ixo^
l
1191 double precision,
intent(in) :: qdt, dtfactor, x(ixi^s, 1:
ndim)
1192 double precision,
intent(inout) :: wct(ixi^s, 1:nw), wprim(ixi^s,1:nw),w(ixi^s, 1:nw)
1196 double precision :: pth(ixi^s),
source(ixi^s), minrho
1197 integer :: iw,idir, h1x^
l{^nooned, h2x^
l}
1198 integer :: mr_,mphi_
1199 integer :: irho, ifluid, n_fluids
1200 double precision :: exp_factor(ixi^s), del_exp_factor(ixi^s), exp_factor_primitive(ixi^s)
1222 source(ixo^s) =
source(ixo^s)*del_exp_factor(ixo^s)/exp_factor(ixo^s)
1226 do ifluid = 0, n_fluids-1
1228 if (ifluid == 0)
then
1252 where (wct(ixo^s, irho) > minrho)
1253 source(ixo^s) =
source(ixo^s) + wct(ixo^s,mphi_)*wprim(ixo^s,mphi_)
1254 w(ixo^s, mr_) = w(ixo^s, mr_) + qdt*
source(ixo^s)/x(ixo^s,
r_)
1257 where (wct(ixo^s, irho) > minrho)
1258 source(ixo^s) = -wct(ixo^s, mphi_) * wprim(ixo^s, mr_)
1259 w(ixo^s, mphi_) = w(ixo^s, mphi_) + qdt *
source(ixo^s) / x(ixo^s,
r_)
1263 w(ixo^s, mr_) = w(ixo^s, mr_) + qdt *
source(ixo^s) / x(ixo^s,
r_)
1268 call mpistop(
"Dust geom source terms not implemented yet with spherical geometries")
1272 h1x^
l=ixo^
l-
kr(1,^
d); {^nooned h2x^
l=ixo^
l-
kr(2,^
d);}
1274 pth(ixo^s)=wprim(ixo^s,
p_)
1283 source(ixo^s) = pth(ixo^s) * x(ixo^s, 1) &
1284 *(
block%surfaceC(ixo^s, 1) -
block%surfaceC(h1x^s, 1)) &
1285 /
block%dvolume(ixo^s)
1289 w(ixo^s, mr_) = w(ixo^s, mr_) + qdt *
source(ixo^s) / x(ixo^s, 1)
1293 source(ixo^s) = pth(ixo^s) * x(ixo^s, 1) &
1294 * (
block%surfaceC(ixo^s, 2) -
block%surfaceC(h2x^s, 2)) &
1295 /
block%dvolume(ixo^s)
1297 source(ixo^s) =
source(ixo^s) + (wprim(ixo^s,
mom(3))**2 * wprim(ixo^s,
rho_)) / tan(x(ixo^s, 2))
1299 source(ixo^s) =
source(ixo^s) - (wprim(ixo^s,
mom(2)) * wprim(ixo^s, mr_)) * wprim(ixo^s,
rho_)
1300 w(ixo^s,
mom(2)) = w(ixo^s,
mom(2)) + qdt *
source(ixo^s) / x(ixo^s, 1)
1304 source(ixo^s) = -(wprim(ixo^s,
mom(3)) * wprim(ixo^s, mr_)) * wprim(ixo^s,
rho_)&
1305 - (wprim(ixo^s,
mom(2)) * wprim(ixo^s,
mom(3))) * wprim(ixo^s,
rho_) / tan(x(ixo^s, 2))
1306 w(ixo^s,
mom(3)) = w(ixo^s,
mom(3)) + qdt *
source(ixo^s) / x(ixo^s, 1)
1315 call mpistop(
"Rotating frame not implemented yet with dust")
1321 end subroutine hd_add_source_geom
1324 subroutine hd_add_source(qdt,dtfactor, ixI^L,ixO^L,wCT,wCTprim,w,x,qsourcesplit,active)
1333 integer,
intent(in) :: ixi^
l, ixo^
l
1334 double precision,
intent(in) :: qdt, dtfactor
1335 double precision,
intent(in) :: wct(ixi^s, 1:nw),wctprim(ixi^s,1:nw), x(ixi^s, 1:
ndim)
1336 double precision,
intent(inout) :: w(ixi^s, 1:nw)
1337 logical,
intent(in) :: qsourcesplit
1338 logical,
intent(inout) :: active
1340 double precision :: gravity_field(ixi^s, 1:
ndim)
1341 integer :: idust, idim
1349 qsourcesplit,active,
rc_fl)
1368 + qdt * gravity_field(ixo^s, idim) * wct(ixo^s,
dust_rho(idust))
1379 if(.not.qsourcesplit)
then
1381 call hd_update_temperature(ixi^
l,ixo^
l,wct,w,x)
1385 end subroutine hd_add_source
1387 subroutine hd_get_dt(w, ixI^L, ixO^L, dtnew, dx^D, x)
1395 integer,
intent(in) :: ixi^
l, ixo^
l
1396 double precision,
intent(in) ::
dx^
d, x(ixi^s, 1:^nd)
1397 double precision,
intent(in) :: w(ixi^s, 1:nw)
1398 double precision,
intent(inout) :: dtnew
1422 end subroutine hd_get_dt
1426 integer,
intent(in) :: ixi^
l, ixo^
l
1427 double precision,
intent(in) :: w(ixi^s, nw)
1428 double precision :: ke(ixo^s)
1429 double precision,
intent(in),
optional :: inv_rho(ixo^s)
1431 if (
present(inv_rho))
then
1432 ke = 0.5d0 * sum(w(ixo^s,
mom(:))**2, dim=
ndim+1) * inv_rho
1434 ke = 0.5d0 * sum(w(ixo^s,
mom(:))**2, dim=
ndim+1) / w(ixo^s,
rho_)
1438 function hd_inv_rho(w, ixI^L, ixO^L)
result(inv_rho)
1440 integer,
intent(in) :: ixi^
l, ixo^
l
1441 double precision,
intent(in) :: w(ixi^s, nw)
1442 double precision :: inv_rho(ixo^s)
1445 inv_rho = 1.0d0 / w(ixo^s,
rho_)
1446 end function hd_inv_rho
1448 subroutine hd_handle_small_values(primitive, w, x, ixI^L, ixO^L, subname)
1455 logical,
intent(in) :: primitive
1456 integer,
intent(in) :: ixi^
l,ixo^
l
1457 double precision,
intent(inout) :: w(ixi^s,1:nw)
1458 double precision,
intent(in) :: x(ixi^s,1:
ndim)
1459 character(len=*),
intent(in) :: subname
1462 logical :: flag(ixi^s,1:nw)
1472 where(flag(ixo^s,
rho_)) w(ixo^s,
mom(idir)) = 0.0d0
1489 where(flag(ixo^s,
e_))
1514 -0.5d0*sum(w(ixi^s,
mom(:))**2, dim=
ndim+1)/w(ixi^s,
rho_))
1517 +0.5d0*sum(w(ixi^s,
mom(:))**2, dim=
ndim+1)/w(ixi^s,
rho_)
1529 if(.not.primitive)
then
1537 w(ixo^s,
mom(idir)) = w(ixo^s,
mom(idir))/w(ixo^s,
rho_)
1544 end subroutine hd_handle_small_values
1546 subroutine rfactor_from_temperature_ionization(w,x,ixI^L,ixO^L,Rfactor)
1549 integer,
intent(in) :: ixi^
l, ixo^
l
1550 double precision,
intent(in) :: w(ixi^s,1:nw)
1551 double precision,
intent(in) :: x(ixi^s,1:
ndim)
1552 double precision,
intent(out):: rfactor(ixi^s)
1554 double precision :: iz_h(ixo^s),iz_he(ixo^s)
1558 rfactor(ixo^s)=(1.d0+iz_h(ixo^s)+0.1d0*(1.d0+iz_he(ixo^s)*(1.d0+iz_he(ixo^s))))/2.3d0
1560 end subroutine rfactor_from_temperature_ionization
1562 subroutine rfactor_from_constant_ionization(w,x,ixI^L,ixO^L,Rfactor)
1564 integer,
intent(in) :: ixi^
l, ixo^
l
1565 double precision,
intent(in) :: w(ixi^s,1:nw)
1566 double precision,
intent(in) :: x(ixi^s,1:
ndim)
1567 double precision,
intent(out):: rfactor(ixi^s)
1571 end subroutine rfactor_from_constant_ionization
1573 subroutine hd_update_temperature(ixI^L,ixO^L,wCT,w,x)
1577 integer,
intent(in) :: ixi^
l, ixo^
l
1578 double precision,
intent(in) :: wct(ixi^s,1:nw), x(ixi^s,1:
ndim)
1579 double precision,
intent(inout) :: w(ixi^s,1:nw)
1581 double precision :: iz_h(ixo^s),iz_he(ixo^s), pth(ixi^s)
1590 end subroutine hd_update_temperature
Calculate w(iw)=w(iw)+qdt*SOURCE[wCT,qtC,x] within ixO for all indices iw=iwmin......
Module with basic data types used in amrvac.
integer, parameter std_len
Default length for strings.
Module to include CAK radiation line force in (magneto)hydrodynamic models Computes both the force fr...
subroutine cak_get_dt(w, ixil, ixol, dtnew, dxd, x)
Check time step for total radiation contribution.
subroutine cak_init(phys_gamma)
Initialize the module.
subroutine cak_add_source(qdt, ixil, ixol, wct, w, x, energy, qsourcesplit, active)
w[iw]=w[iw]+qdt*S[wCT,qtC,x] where S is the source based on wCT within ixO
subroutine, public mpistop(message)
Exit MPI-AMRVAC with an error message.
Module for physical and numeric constants.
double precision, parameter bigdouble
A very large real number.
Module for including dust species, which interact with the gas through a drag force.
subroutine, public dust_add_source(qdt, ixil, ixol, wct, w, x, qsourcesplit, active)
w[iw]= w[iw]+qdt*S[wCT, x] where S is the source based on wCT within ixO
subroutine, public dust_evaluate_implicit(qtc, psa)
inplace update of psa==>F_im(psa)
subroutine, public dust_to_primitive(ixil, ixol, w, x)
subroutine, public dust_get_dt(w, ixil, ixol, dtnew, dxd, x)
Get dt related to dust and gas stopping time (Laibe 2011)
subroutine, public dust_get_flux(w, x, ixil, ixol, idim, f)
integer, dimension(:, :), allocatable, public, protected dust_mom
Indices of the dust momentum densities.
subroutine, public dust_to_conserved(ixil, ixol, w, x)
integer, public, protected dust_n_species
The number of dust species.
subroutine, public dust_get_flux_prim(w, x, ixil, ixol, idim, f)
subroutine, public dust_check_w(ixil, ixol, w, flag)
integer, dimension(:), allocatable, public, protected dust_rho
Indices of the dust densities.
subroutine, public dust_get_cmax(w, x, ixil, ixol, idim, cmax, cmin)
subroutine, public dust_check_params()
subroutine, public dust_get_cmax_prim(w, x, ixil, ixol, idim, cmax, cmin)
subroutine, public dust_init(g_rho, g_mom, g_energy)
subroutine, public dust_implicit_update(dtfactor, qdt, qtc, psb, psa)
Implicit solve of psb=psa+dtfactor*dt*F_im(psb)
Module for flux conservation near refinement boundaries.
Module with geometry-related routines (e.g., divergence, curl)
integer, parameter spherical
integer, parameter cylindrical
integer, parameter cartesian_expansion
This module contains definitions of global parameters and variables and some generic functions/subrou...
type(state), pointer block
Block pointer for using one block and its previous state.
logical h_correction
If true, do H-correction to fix the carbuncle problem at grid-aligned shocks.
double precision small_pressure
double precision unit_time
Physical scaling factor for time.
double precision unit_density
Physical scaling factor for density.
integer, parameter unitpar
file handle for IO
double precision global_time
The global simulation time.
double precision unit_mass
Physical scaling factor for mass.
logical use_imex_scheme
whether IMEX in use or not
integer, dimension(3, 3) kr
Kronecker delta tensor.
integer it
Number of time steps taken.
double precision unit_numberdensity
Physical scaling factor for number density.
character(len=std_len) convert_type
Which format to use when converting.
double precision unit_pressure
Physical scaling factor for pressure.
integer, parameter ndim
Number of spatial dimensions for grid variables.
double precision unit_length
Physical scaling factor for length.
logical use_particles
Use particles module or not.
character(len=std_len), dimension(:), allocatable par_files
Which par files are used as input.
integer mype
The rank of the current MPI task.
double precision, dimension(:), allocatable, parameter d
integer ndir
Number of spatial dimensions (components) for vector variables.
double precision unit_velocity
Physical scaling factor for velocity.
double precision unit_temperature
Physical scaling factor for temperature.
logical si_unit
Use SI units (.true.) or use cgs units (.false.)
double precision, dimension(:,:), allocatable dx
logical phys_trac
Use TRAC for MHD or 1D HD.
logical fix_small_values
fix small values with average or replace methods
logical crash
Save a snapshot before crash a run met unphysical values.
double precision, dimension(^nd) dxlevel
store unstretched cell size of current level
double precision small_density
integer r_
Indices for cylindrical coordinates FOR TESTS, negative value when not used:
integer boundspeed
bound (left/min and right.max) speed of Riemann fan
integer, parameter unitconvert
logical check_small_values
check and optionally fix unphysical small values (density, gas pressure)
Module for including gravity in (magneto)hydrodynamics simulations.
logical grav_split
source split or not
subroutine gravity_get_dt(w, ixil, ixol, dtnew, dxd, x)
subroutine gravity_init()
Initialize the module.
subroutine gravity_add_source(qdt, ixil, ixol, wct, wctprim, w, x, energy, rhov, qsourcesplit, active)
w[iw]=w[iw]+qdt*S[wCT,qtC,x] where S is the source based on wCT within ixO
Hydrodynamics physics module.
subroutine, public hd_check_params
logical, public, protected hd_energy
Whether an energy equation is used.
logical, public, protected hd_dust
Whether dust is added.
integer, public, protected e_
Index of the energy density (-1 if not present)
logical, public, protected hd_radiative_cooling
Whether radiative cooling is added.
double precision, public, protected rr
double precision, public hd_gamma
The adiabatic index.
integer, public, protected hd_trac_type
logical, public, protected hd_particles
Whether particles module is added.
type(tc_fluid), allocatable, public tc_fl
subroutine, public hd_check_w(primitive, ixil, ixol, w, flag)
Returns logical argument flag where values are ok.
logical, public, protected hd_viscosity
Whether viscosity is added.
subroutine, public hd_get_csound2(w, x, ixil, ixol, csound2)
Calculate the square of the thermal sound speed csound2 within ixO^L. csound2=gamma*p/rho.
integer, public, protected tcoff_
Index of the cutoff temperature for the TRAC method.
double precision, public, protected he_ion_fr2
Ratio of number He2+ / number He+ + He2+ He_ion_fr2 = He2+/(He2+ + He+)
integer, public, protected te_
Indices of temperature.
integer, dimension(:), allocatable, public, protected mom
Indices of the momentum density.
double precision, public, protected h_ion_fr
Ionization fraction of H H_ion_fr = H+/(H+ + H)
double precision function, dimension(ixo^s), public hd_kin_en(w, ixil, ixol, inv_rho)
subroutine, public hd_to_conserved(ixil, ixol, w, x)
Transform primitive variables into conservative ones.
logical, public, protected hd_cak_force
Whether CAK radiation line force is activated.
subroutine, public hd_phys_init()
Initialize the module.
integer, dimension(:), allocatable, public, protected tracer
Indices of the tracers.
logical, public, protected hd_thermal_conduction
Whether thermal conduction is added.
logical, public, protected eq_state_units
double precision, public hd_adiab
The adiabatic constant.
subroutine, public hd_to_primitive(ixil, ixol, w, x)
Transform conservative variables into primitive ones.
integer, public, protected rho_
Index of the density (in the w array)
logical, public, protected hd_partial_ionization
Whether plasma is partially ionized.
double precision, public, protected he_ion_fr
Ionization fraction of He He_ion_fr = (He2+ + He+)/(He2+ + He+ + He)
double precision, public, protected he_abundance
Helium abundance over Hydrogen.
logical, public, protected hd_gravity
Whether gravity is added.
type(rc_fluid), allocatable, public rc_fl
logical, public, protected hd_trac
Whether TRAC method is used.
integer, public, protected hd_n_tracer
Number of tracer species.
type(te_fluid), allocatable, public te_fl_hd
logical, public, protected hd_rotating_frame
Whether rotating frame is activated.
subroutine, public hd_get_pthermal(w, x, ixil, ixol, pth)
Calculate thermal pressure=(gamma-1)*(e-0.5*m**2/rho) within ixO^L.
integer, public, protected p_
Index of the gas pressure (-1 if not present) should equal e_.
module ionization degree - get ionization degree for given temperature
subroutine ionization_degree_from_temperature(ixil, ixol, te, iz_h, iz_he)
subroutine ionization_degree_init()
Module containing all the particle routines.
subroutine particles_init()
Initialize particle data and parameters.
This module defines the procedures of a physics module. It contains function pointers for the various...
module radiative cooling – add optically thin radiative cooling for HD and MHD
subroutine radiative_cooling_init_params(phys_gamma, he_abund)
Radiative cooling initialization.
subroutine cooling_get_dt(w, ixil, ixol, dtnew, dxd, x, fl)
subroutine radiative_cooling_init(fl, read_params)
subroutine radiative_cooling_add_source(qdt, ixil, ixol, wct, wctprim, w, x, qsourcesplit, active, fl)
Module for including rotating frame in (magneto)hydrodynamics simulations The rotation vector is assu...
subroutine rotating_frame_add_source(qdt, dtfactor, ixil, ixol, wct, w, x)
w[iw]=w[iw]+qdt*S[wCT,qtC,x] where S is the source based on wCT within ixO
subroutine rotating_frame_init()
Initialize the module.
Module for handling problematic values in simulations, such as negative pressures.
subroutine, public small_values_average(ixil, ixol, w, x, w_flag, windex)
logical, public trace_small_values
trace small values in the source file using traceback flag of compiler
subroutine, public small_values_error(wprim, x, ixil, ixol, w_flag, subname)
logical, dimension(:), allocatable, public small_values_fix_iw
Whether to apply small value fixes to certain variables.
character(len=20), public small_values_method
How to handle small values.
Generic supertimestepping method 1) in amrvac.par in sts_list set the following parameters which have...
subroutine, public add_sts_method(sts_getdt, sts_set_sources, startvar, nflux, startwbc, nwbc, evolve_b)
subroutine which added programatically a term to be calculated using STS Params: sts_getdt function c...
subroutine, public set_conversion_methods_to_head(sts_before_first_cycle, sts_after_last_cycle)
Set the hooks called before the first cycle and after the last cycle in the STS update This method sh...
subroutine, public set_error_handling_to_head(sts_error_handling)
Set the hook of error handling in the STS update. This method is called before updating the BC....
subroutine, public sts_init()
Initialize sts module.
Thermal conduction for HD and MHD or RHD and RMHD or twofl (plasma-neutral) module Adaptation of mod_...
subroutine, public tc_get_hd_params(fl, read_hd_params)
Init TC coefficients: HD case.
double precision function, public get_tc_dt_hd(w, ixil, ixol, dxd, x, fl)
Get the explicit timestep for the TC (hd implementation)
subroutine tc_init_params(phys_gamma)
subroutine, public sts_set_source_tc_hd(ixil, ixol, w, x, wres, fix_conserve_at_step, my_dt, igrid, nflux, fl)
subroutine get_euv_image(qunit, fl)
subroutine get_sxr_image(qunit, fl)
subroutine get_euv_spectrum(qunit, fl)
subroutine get_whitelight_image(qunit, fl)
Module with all the methods that users can customize in AMRVAC.
procedure(rfactor), pointer usr_rfactor
procedure(set_surface), pointer usr_set_surface
procedure(phys_gravity), pointer usr_gravity
procedure(hd_pthermal), pointer usr_set_pthermal
integer nw
Total number of variables.
integer number_species
number of species: each species has different characterictic speeds and should be used accordingly in...
The module add viscous source terms and check time step.
subroutine, public visc_get_flux_prim(w, x, ixil, ixol, idim, f, energy)
subroutine viscosity_add_source(qdt, ixil, ixol, wct, w, x, energy, qsourcesplit, active)
subroutine viscosity_init(phys_wider_stencil)
Initialize the module.
subroutine viscosity_get_dt(w, ixil, ixol, dtnew, dxd, x)
subroutine visc_add_source_geom(qdt, ixil, ixol, wct, w, x)